Functional, physico-chemical, and proximate properties of flours from selected NSIC-registered cassava (Manihot esculenta) varieties

Authors

  • Ivy C. Emnace Department of Food Science and Technology, Visayas State University, Visca, Baybay City, Leyte, 6521-A, Philippines https://orcid.org/0009-0004-2642-7309
  • Eileen B. Cayetano Department of Food Science and Technology, Visayas State University, Visca, Baybay City, Leyte, 6521-A, Philippines https://orcid.org/0009-0002-9863-2593
  • Arvin P. Villafuerte Jr. Department of Food Science and Technology, Visayas State University, Visca, Baybay City, Leyte, 6521-A, Philippines
  • Khyle O. Sta. Iglesia Department of Food Science and Technology, Visayas State University, Visca, Baybay City, Leyte, 6521-A, Philippines
  • Roberta D. Lauzon Department of Food Science and Technology, Visayas State University, Visca, Baybay City, Leyte, 6521-A, Philippines

DOI:

https://doi.org/10.32945/atr47217.2025

Keywords:

cassava, flour, functional properties, NSIC-registered cassava variety

Abstract

Cassava flour is known for its functional properties that influence the consistency, texture, and stability of various food products. A single-factor experiment arranged in a Completely Randomized Design was used to evaluate and compare the functional properties of flour from the three selected National Seed Industry Council (NSIC)-registered cassava varieties: UPL Ca-2 (Lakan I), NSIC Cv-30 (Rayong 5), and NSIC Cv-48 (Rayong 72), harvested at nine months of maturity. The samples were analyzed for their functional properties, physicochemical properties, and proximate composition. The functional properties of the cassava flours were significantly different from each other at p<.05. UPL Ca-2 had the highest water absorption capacity (WAC) and oil absorption capacity (OAC) at 153.44% and 125.57%, respectively. Meanwhile, NSIC Cv-48 had the highest solubility, emulsion activity, and bulk density at 5.98%, 17.39%, and 0.572g/mL, respectively. Swelling power and emulsion stability of NSIC Cv-30 flour were the highest among the selected varieties at 15.35% and 34.15%, respectively. The pH (5.64) and titratable acidity (0.36% as lactic acid) of NSIC Cv-48 were significantly different from those of the other two varieties. The lightness (L*) of the three varieties did not differ. The a* value ranged from -0.19 to -.32, indicating a color leaning towards redness. However, significant variations in b* (7.35), WI (91.54), and Chroma (7.36) were only observed in UPL Ca-2. Gel-formation ability of the cassava flours was visually observed, showing a difference in gel firmness. Proximate composition of the flours show a low content of fat (0.28%, 0.23%, 0.24%, respectively) and protein (1.82%, 1.24%, 1.35%, respectively) in the flours but had a high total carbohydrate (83.61%, 85.42%, and 84.61%) and ash contents (1.49%, 1.46%, and 1.49%). These findings indicate that each variety has distinct functional properties with potential industrial applications.

References

[AOAC] Association of Official Analytical Chemists. (1990). Official methods of analysis. 15th ed. Arlington, VA: Association of Official Analytical Chemists, Inc.

Abiodun, O., Ayano, B., & Amanyunose, A. (2020). Effect of fermentation periods and storage on the chemical and physicochemical properties of biofortified cassava gari. Journal of Food Processing and Preservation. 44(12), Article e14958

Adams, Z. S., Wireko Manu, F. D., Agbenorhevi, J., & Oduro, I. (2019). Improved Yam-Baobab-Tamarind flour blends: Its potential use in extrusion cooking. Scientific African, 6, e00126. https://doi.org/10.1016/j.sciaf.2019.e00126

Adebowale, A. A., Sanni, L. O., & Awonorin, S. O. (2005). Effect of Texture Modifiers on the Physicochemical and Sensory Properties of Dried Fufu. Food Science and Technology International, 11(5), 373–382. https://doi.org/10.1177/1082013205058531

Adeola, A.A., Odowu, M.A., Oyatogun, R.M., Adebowale, A.A., Afolabi, W.A.O., & Adigbo, S.O. (2020). Quality of cassava flour as affected by age at harvest, cropping system and variety. Agricultura Tropica Et Subtropica. 53(4), (pp 187-198).

Aidoo, R., Oduro, I. N., Agbenorhevi, J. K., Ellis, W. O., & Pepra-Ameyaw, N. B. (2022). Physicochemical and pasting properties of flour and starch from two new cassava accessions. International Journal of Food Properties, 25(1), 561–569. https://doi.org/10.1080/10942912.2022.2052087

Akinsola, A. O., Sunmonu, B. A., Akinola, F. D., Adeyanju, O., Taiwo-Oshin, M. A., & Gbadegesin, I. A. (2025). Functional Properties and Chemical Composition of Yellow and White Cassava Flours. Nutrition and Food Processing, 8(4), 01–06. https://doi.org/10.31579/2637-8914/301

Akapata, M.I., & Akubor, P.I. (1999). Chemical composition and selected functional properties of sweet orange (Citrus sinensis) seed flour. Plant food human nutrition. 54, (pp. 353-362).

Almazan, A.M. (1988). Effect of cassava flour variety and concentration on bread loaf quality. Cereal chem. 67(1), (pp. 97-99).

Alviola, J. N. A., & Monterde, V. G. (2018). Physicochemical and Functional Properties of Wheat (Triticum aestivum) and Selected Local Flours in the Philippines. Philippine Journal of Science, 3(147), 419–430.

Alviola, J.N. A., & Viena, G.M. (2018). Physicochemical and functional properties of Wheat (Triticum aestivum) and selected local flours in the Philippines. Philippine Journal of Science. 147(3), (pp. 419-430).

Annor Frempong, I.E., Annan-Prah, A., & Wiredu, R. (1996). Cassava as a non-conventional filler in comminuted meat. Meat science. 44(3), (pp. 193-202).

Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J Food Sci. Technol. 51, (pp. 3669-3679).

Aryee, F. N. A., Oduro, I., Ellis, W. O., & Afuakwa, J. J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control, 17(11), 916–922. https://doi.org/10.1016/j.foodcont.2005.06.013

Awuchi, C.G., Igwe, V.S., & Echeta, C.K. (2019). The functional properties of foods and flours. Int. Journal of Advanced Academic Research. 5(11), (pp. 139-160).

Bacusmo, J. L. (2001). Status and potentials of the Philippine cassava industry. https://hdl.handle.net/10568/82426

Barbosa-Cánovas, G., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. Springer Science & Business Media. https://doi.org/10.1007/0-387-27613-0

Beninca, C., Colman, T.A.D., Lacerda, L.G., Carvalho Filho, M.A., Demiate, I.M., Bannach, G., & Schnitzler, E. (2013). Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions. J Therm Anal Calorim. 111, (pp. 2217-2222).

Bhattacharya, S., & Prakash, M. (1994). Extrusion of blends of rice and chick pea flours: a response surface analysis. Journal of Food Engineering. 21, (pp. 315-330).

Brignhurst, T. A., Harrison, B. M., & Brosnan, J. (2022). Scotch whisky: Raw material selection and processing. In Whisky and Other Spirits (pp. 137–203). Academic Press. https://doi.org/10.1016/B978-0-12-822076-4.00018-8

Byju, G., & Suja G. (2020). Mineral nutrition of cassava. Advances in Agronomy. 159, (pp. 169-235).

Castillo, L.S. (1974). The cassava industry of the Philippines. In: Cassava Processing and storage. Proceedings of an interdisciplinary workshop at the Int. Develop. Res. Centre IDRC-031e; 1974 April 17-19; Pattaya, Thailand, (pp. 63-71).

Chandra, S., & Samsher, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research. 8(38), (pp. 4849-4852).

Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681–3688. https://doi.org/10.1007/s13197-014-1427-2

Charles, A. L., Sriroth, K., & Huang, T. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 92(4), 615–620. https://doi.org/10.1016/j.foodchem.2004.08.024

Charoenrath, S., Boonsang, O., & Narkvirot, C. (1999). Biochemical Composition in Cassava Root and Physico-chemical Properties of Starch. http://ciat-library.ciat.cgiar.org/articulos_ciat/cbn/Posters-PDF/PS-5/S_Charoenrath.pdf

Chen, G.-X., Zhou, J.-W., Liu, Y.-L., Lu, X.-B., Han, C.-X., Zhang, W.-Y., Xu, Y.-H., & Yan, Y.-M. (2016). Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins. Scientific Reports, 6, 33111. https://doi.org/10.1038/srep33111

Chimphepo, L., Alamu, E.O., Monjerezi, M., Ntawuruhunga, P., & Saka, J.D.K. (2021). Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT-Food Science and Technology. 147, (pp. 111592).

Chisenga, S.M., Workneh, T.S., Bultosa, G., & Alimi, B.A. (2019). Progress in research and application of cassava flour and starch: A review. Journal of Food Science and Technology. 56(6), (pp. 2799-2813).

Chisté, R. C., Cardoso, J. M., Silva, D. A. da, & Pena, R. da S. (2015). Hygroscopic behaviour of cassava flour from dry and water groups. Ciência Rural, 45, 1515–1521. https://doi.org/10.1590/0103-8478cr20140338

Dereje, B., Girma, A., Mamo, D., & Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: A review. International Journal of Food Properties, 23(1), 1639–1662. https://doi.org/10.1080/10942912.2020.1818776

Eriksson, E., Koch, K., Tortoe, C., Akonor, P.T., & Baidoo, E. (2014). Physicochemical, functional and pasting characteristics of three varieties of cassava in wheat composite flours. British Journal of Applied Science & Technology. 4(11), (pp. 1609-1621).

Grah, B., Beda, M., Aubin, P., Niaba, K. P., & Gnakri, D. (2014). MANUFACTURE OF BISCUIT FROM THE FLOUR OF WHEAT AND LENTIL SEEDS AS A FOOD SUPPLEMENT. https://www.semanticscholar.org/paper/MANUFACTURE-OF-BISCUIT-FROM-THE-FLOUR-OF-WHEAT-AND-Grah-Beda/ccc656c33a3f11a3602ea48aa360fc003de6b889

Gunorubon, J., & Kekpugile, K. (2012). Modification of cassava starch for industrial uses. International Journal of Engineering and Technology, 2(6).

Harris, G. K., & Marshall, M. R. (2017). Ash Analysis. In S. S. Nielsen (Ed.), Food Analysis. (pp. 287–297). Springer International Publishing. https://doi.org/10.1007/978-3-319-45776-5_16

Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2020). Physicochemical and functional properties of cassava flour grown in different locations in Sabah, Malaysia. Food Research, 4(4), 991–999. https://doi.org/10.26656/fr.2017.4(4).405

Hayes, M. (2020). Measuring protein content in food: an overview of methods. Foods. 9(10), (pp. 1340).

Hurtada, W. A., Barrion, A. S. A., Nguyen-Orca, M. F. R., Orillo, A. T. O., Magpantay, R. L. J., Geronimo, G. D., & Rodriguez, F. M. (2020). Physicochemical properties, nutritional value, and sensory quality of cassava (Manihot esculenta Crantz) rice-like grains. Food Research, 4(5), 1623–1629. https://doi.org/10.26656/fr.2017.4(5).082

Imoisi, C. (2024). Proximate composition and pasting properties of composite flours from cassava (Manihot esculenta) and Millet (Panicum miliaceum). Trends in Applied Research. 19(1), (pp. 145-155).

[IITA] International Institute of Tropical Agriculture. (1990). Cassava in tropical Africa: A reference manual. Ibadan (pp. 85-120).

Kesselly, S., Mugabi, R., & Byaruhanga, Y. (2022). Effect of Extrusion on the Functional and Pasting Properties of High-quality Cassava Flour (HQCF). Journal of Food Research, 11(4), 1–12.

Kusumayanti, H., Handayani, N. A., & Santosa, H. (2015). Swelling Power and Water Solubility of Cassava and Sweet Potatoes Flour. Procedia Environmental Sciences, 23, 164–167. https://doi.org/10.1016/j.proenv.2015.01.025

Lee, C.-K., Le, Q.-T., Kim, Y.-H., Shim, J.-H., Lee, S.-J., Park, J.-H., Lee, K.-P., Song, S.-H., Auh, J. H., Lee, S.-J., & Park, K.-H. (2008). Enzymatic Synthesis and Properties of Highly Branched Rice Starch Amylose and Amylopectin Cluster. Journal of Agricultural and Food Chemistry, 56(1), 126–131. https://doi.org/10.1021/jf072508s

Lu, H., Guo, L., Zhang, L., Xie, C., Li, W., Gu, B., & Li, K. (2019). Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Science & Nutrition, 8(1), 521–533. https://doi.org/10.1002/fsn3.1334

Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Stärke, 54(12), 559–592.

Moorthy, S.N., & Ramanujam, T. (1986). Variation in properties of starch in cassava varieties in relation to age of the crop. Starch/Staeke 38, (pp. 2).

Murayama, D., Kasano, M., Santiago, D. M., Yamauchi, H., & Koaze, H. (2014). Effect of Pre-Gelatinization on the Physicochemical Properties of Dry Flours Produced from 5 Cassava Varieties of the Philippines. Food Science and Technology Research, 20(6), 1131–1140. https://doi.org/10.3136/fstr.20.1131

Nilusha, R.A.T., Jayasinghe, J.M.J.K., Perera, O.D.A.N, & Jayasinghe, C.V.L. (2021). Proximate composition, physicochemical, functional, and antioxidant properties of flours from selected Cassava (Manihot esculenta Crantz) varieties. International Journal of Food Science 2021, (pp. 1-13).

Nyawose, Z., Dwarka, D., Kumar Puri, A., Bairu, M., & Mellem, J. (2022). Thermal, pasting, and hydration properties of flour from novel cassava cultivars for potential applications in the food industry. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY. 16(2), (pp. 237-248).

Oladunmoye, O. O., Aworh, O. C., Maziya-Dixon, B., Erukainure, O. L., & Elemo, G. N. (2014). Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends. Food Science & Nutrition, 2(2), 132–138. https://doi.org/10.1002/fsn3.83

Olakanmi, S. J., Jayas, D. S., Paliwal, J., & Aluko, R. E. (2024). Impact of Particle Size on the Physicochemical, Functional, and In Vitro Digestibility Properties of Fava Bean Flour and Bread. Foods, 13(18), 2862. https://doi.org/10.3390/foods13182862

Osei Tutu, C., Amissah, J. G. N., Amissah, J. N., Akonor, P. T., Budu, A. S., & Saalia, F. K. (2024). Physical, chemical, and rheological properties of flour from accessions of Frafra potato (Solenostemon rotundifolius). Journal of Agriculture and Food Research, 15, 100974. https://doi.org/10.1016/j.jafr.2024.100974

Otekunrin, O. A. (2024). Cassava (Manihot esculenta Crantz): A global scientific footprint—production, trade, and bibliometric insights. Discover Agriculture, 2(1), 94. https://doi.org/10.1007/s44279-024-00121-3

Oyeyinka, S., Ayinla, S., Sanusi, C., Akin Tayo, O., Oyedeji, A., Oladipo, J., Akeem, A., Badmos, A.H., Adeloye, A., & Diarra, S. (2020). Chemical and physicochemical properties of fermented flour from refrigerated cassava root and sensory properties of its cooked paste. Journal of Food Processing and Preservation 44(9): Article e14684.

Park, J., Sung, J. M., Choi, Y.-S., & Park, J.-D. (2021). pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis. Food Hydrocolloids, 117, 106754. https://doi.org/10.1016/j.foodhyd.2021.106754

Pichmoney, E.K., Baner, J.M., & Ganjyal, G.M. (2020). Extrusion processing of cereal grains, tubers and seeds. Extrusion cooking (2nd Edition). Elsevier. (pp. 225-263).

Philippine Root Crop Research and Training Center. (n.d.). Rootcrop Varieties. PhilRootCrops. Retrieved November 28, 2025, from https://philrootcrops.vsu.edu.ph/

[PNS] Philippine National Standard. (2010). PNS/BAFPS 29:2010, ICS 67.080

Renzetti, S., Henket, J., Raaijmakers, E., van den Hoek, I., & van der Sman, R. (2025). Hydrogen bond density and glass-transition temperature govern gelatinization and gel rheology in cereal and tuber starches. Current Research in Food Science, 10, 101101. https://doi.org/10.1016/j.crfs.2025.101101

Roa, D. F., Santagapita, P. R., Buera, M. P., & Tolaba, M. P. (2014). Ball Milling of Amaranth Starch-Enriched Fraction. Changes on Particle Size, Starch Crystallinity, and Functionality as a Function of Milling Energy. Food and Bioprocess Technology, 7(9), 2723–2731. https://doi.org/10.1007/s11947-014-1283-0

Rojas, C.C., Nair, B., Herbas, A., & Bergensthal, B. (2007). Proximal composition and mineral contents of six varieties of cassava (Mannihot Esculenta Crantz). Bolivia. Rev Boliv Quim, 24(1), (pp. 71–77).

Shifa Putri Mohidin, S.R.N., Moshawi, S., Hermansyah, A., Asmuni, M.I., Shafqat, N., & Chiau Ming, L. (2023). Cassava (Manihot esculenta Crantz): A Systematic Review for the Pharmacological Activities, Traditional Uses, Nutritional Values, and Phytochemistry. Journal of Evidence-Based Integrative Medicine. 28, (pp. 1-26).

Shimelis, E.A., Meaza, M., & Rakshit S. (2006). Physico-chemical properties, pasting behavior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International. 8, (pp. 1-19).

Singh, N., Singh, J., Kaur, L., Sodhi, N.S., & Gill, B.S. (2003). Morphological, thermal and rheological properties of starches from difference botanical sources. Food Chem. 81(2), (pp. 219-231).

Tester, R. F., & Morrison, W. R. (1990). Swelling and Gelatinization of Cereal Starches. I. Effects of Amylopectin, Amylose, and Lipids’. Cereal Chem., 67(6), 551–557.

Thaweewong, P., & Anuntagool, J. (2023). Change in free cyanide content of bitter cassava during incubation and drying and physical properties of dry-milled cassava flour. Food and Bioproducts Processing, 138, 139–149. https://doi.org/10.1016/j.fbp.2023.01.009

Thaweewong, P., Chotineeranat, S., & Anuntagool, J. (2023). Removal of free cyanide in dry-milled cassava flour using atmospheric nonthermal plasma treatment. LWT, 181, 114761. https://doi.org/10.1016/j.lwt.2023.114761

Tulin, E.E., Cardaño, C.M., Tulin, A.B., Loreto, M.T., Tulin, E.K.C., & Yu M.Y.N. (2023). Compositional properties of flours and starches from the Philippine National Seed and Industry Council-registered root crops. Philipp Agric Scientist. 106(2), (pp. 143-156)

Udoro, E. O., Anyasi, T. A., & Jideani, A. I. O. (2021). Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour. Processes, 9(11), 1891. https://doi.org/10.3390/pr9111891

Vermelho, A. B., Moreira, J. V., Junior, A. N., da Silva, C. R., Cardoso, V. da S., & Akamine, I. T. (2024). Microbial Preservation and Contamination Control in the Baking Industry. Fermentation, 10(5), 231. https://doi.org/10.3390/fermentation10050231

Wheat Marketing Center, Inc. (2004). WHEAT and FLOUR TESTING METHODS. Wheat Marketing Center, Inc. https://uswheat.org/wp-content/uploads/2024/07/Wheat-and-Flour-Testing-Methods-Book.pdf

Wheatley, C. C., Chuzel, G., & Zakhia, N. (2003). CASSAVA | The Nature of the Tuber. In B. Caballero (Ed.), Encyclopedia of Food Sciences and Nutrition (Second Edition) (pp. 964–969). Academic Press. https://doi.org/10.1016/B0-12-227055-X/00181-4

Xiao, T., Ma, X., Hu, H., Xiang, F., Zhang, X., Zheng, Y., Dong, H., Adhikari, B., Wang, Q., & Shi, A. (2025). Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chemistry: X, 29, 102792. https://doi.org/10.1016/j.fochx.2025.102792

Yuan, T. Z., Liu, S., Reimer, M., Isaak, C., & Ai, Y. (2021). Evaluation of pasting and gelling properties of commercial flours under high heating temperatures using Rapid Visco Analyzer 4800. Food Chemistry, 344, 128616. https://doi.org/10.1016/j.foodchem.2020.128616

Zainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018). Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 142, 115–123. https://doi.org/10.1016/j.postharvbio.2017.09.004

Submitted

2025-11-24

Accepted

2025-12-01

Published

2025-12-10

How to Cite

Emnace, I., Cayetano, E., Villafuerte , A. J., Sta. Iglesia, K., & Roberta, L. (2025). Functional, physico-chemical, and proximate properties of flours from selected NSIC-registered cassava (Manihot esculenta) varieties. Annals of Tropical Research, 47(2), 262–289. https://doi.org/10.32945/atr47217.2025

Issue

Section

Original Research Article
Crossref
Scopus
Google Scholar
Europe PMC

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.