Leaf and stem anatomy and wood fiber morphology of Seriales (Flacourtia jangomas) at different elevations in La Union, Philippines

Authors

  • Reynalene M. Soriano College of Agroforestry and Forestry, North La Union Campus, Don Mariano Marcos Memorial State University, Bacnotan La Union, 2517, Philippines
  • Claudine F. Camacho College of Agroforestry and Forestry, North La Union Campus, Don Mariano Marcos Memorial State University, Bacnotan La Union, 2517, Philippines
  • Ruby Anne G. Olbinado-Quillope College of Agroforestry and Forestry, North La Union Campus, Don Mariano Marcos Memorial State University, Bacnotan La Union, 2517, Philippines https://orcid.org/0009-0008-8436-7649
  • Jay Mark G. Cortado College of Agroforestry and Forestry, North La Union Campus, Don Mariano Marcos Memorial State University, Bacnotan La Union, 2517, Philippines https://orcid.org/0009-0007-4426-1025
  • Jayric F. Villareal College of Forestry and Environmental Studies, Mindanao State University-Maguindanao, Bangsamoro Autonomous Region in Muslim Mindanao (BARMM), Philippines

DOI:

https://doi.org/10.32945/atr47211.2025

Keywords:

adaptive traits, anatomical characteristics, plasticity, elevation gradient, wood fibers, microclimate

Abstract

Seriales is an underutilized Philippine (Flacourtia jangomas) indigenous fruit tree with ecological and economic potential but limited anatomical evidence across elevation gradients. We quantified leaf and stem anatomy and wood fiber morphology across three low-elevation bands in La Union, Philippines (55–70masl, 71–85masl and 86–100masl). Mature leaves and young stems of F. jangomas were collected, stained, and observed for their leaf and stem anatomical measurements. Wood fibers were macerated and analyzed for fiber length, diameter, lumen diameter, and derived indices. Several leaf traits varied significantly with elevation: lamina and palisade mesophyll were greatest at the lowest site and declined upslope, whereas lower cuticle/epidermis, sclerenchyma, collenchyma, phloem, and collenchyma layers also differed among sites. In contrast, upper cuticle/epidermis, leaf xylem, and spongy mesophyll (~260–303μm) were not significantly different, suggesting conserved internal gas-exchange capacity. Stem anatomy showed decreasing cortex thickness and layer number with elevation, but increasing xylem thickness. Epidermal hairs were longer at the highest site. Wood fiber length shows values similar to tropical species, while mid-elevation trees had smaller fiber and lumen diameters, yielding higher density. High Runkel ratios (>1), low flexibility, and low slenderness indicate poor suitability for pulp and papermaking, but support use for durable woodcraft and small furniture. Overall, F. jangomas exhibits anatomical plasticity within a narrow lowland gradient, showing its resilience and value for lowland agroforestry. This study also highlights the need for conservation of this species and further studies that focus on the effect of climatic factors and stressors.

References

Agoto Jr., R. N., Hernandez, J. O., & Park, B. B. (2024). Morphoanatomy and physiology of Swietenia macrophylla in different light environments: Insights into its invasive ability in the Philippines. Biodiversitas Journal of Biological Diversity, 25(1), 257–263. https://doi.org/10.13057/biodiv/d250129 Smujo+2researchgate.net+2

Bektas, İ., Tutuş, A., & Eroğlu, H. (1999). A study of the suitability of Calabrian pine ( Pinus brutia Ten.) for pulp and paper manufacture. Turkish Journal of Agriculture and Forestry, 23(9), 589–598. https://journals.tubitak.gov.tr/agriculture/vol23/iss9/7/ journals.tubitak.gov.tr+1

Bureau of Soils and Water Management. (2016). Soil pH map of La Union, Philippines. https://www.bswm.da.gov.ph/wp-content/uploads/La-Union_PH.pdf

Cai, Q., & Liu, Y. (2013). Climatic response of three tree species growing at different elevations in the Luliang Mountains of Northern China. Dendrochronologia, 31(4), 311–317. https://doi.org/10.1016/j.dendro.2012.07.003 ScienceDirect+1

Carlquist, S. (2012). Wood anatomy of Gnetales in a functional, ecological, and evolutionary context. Aliso: A Journal of Systematic and Floristic Botany, 30(1), 33–47. https://doi.org/10.5642/aliso.20123001.05

Chowdhury, S. A., Das, R., Haq, M. A., Azam, A. T. M. Z., Hasan, C. M., & Ahsan, M. (2024). Isolation of methyl caffeate and flacourtin from Flacourtia jangomas with comprehensive in-vitro and in-vivo pharmacological evaluation. Heliyon, 10(23), e40445. https://doi.org/10.1016/j.heliyon.2024.e40445

Cimafranca, L. C. (2018). Proximate composition of raw and heat-treated seriale (Flacourtia jangomas (Lour.)- Raeusch.) fruit. Central Mindanao University Journal of Science 22(2), 74-79. https://doi.org/10.52751/76m24792

DeLucia, E. H., & Berlyn, G. P. (1984). The effect of increasing elevation on leaf cuticle thickness of balsam fir ( Abies balsamea ). Canadian Journal of Botany, 62(11), 2423–2427. https://doi.org/10.1139/b84-331

Dinwoodie, J. M. (1965). The relationship between fiber morphology and paper properties: A review of literature. TAPPI Journal, 48, 440–447. https://www.cabidigitallibrary.org/doi/full/10.5555/19650607030

Dutt, D., & Tyagi, C. H. (2011). Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian Journal of Chemical Technology, 18(2), 145–151. http://nopr.niscair.res.in/bitstream/123456789/11624/1/IJCT%2018(2)%20145-151.pdf

Ebale, M. R. B., Hernandez, J. O., & Tinio, C. E. (2024). Leaf traits of Parashorea malaanonan along elevational gradient in Mount Makiling Forest Reserve, Philippines. Jurnal Sylva Lestari, 12(1), 38–53. https://doi.org/10.23960/jsl.v12i1.798

Escobin, R. P., Conda, J. M., & Pitargue Jr., F. C. (2015). Taxonomy and wood anatomy of Philippine trees with included phloem. Philippine Forest Products Journal, 6, 22–31. https://agris.fao.org/search/en/providers/122430/records/6473b0be96fdec8b71b5a98a

Espiloy, Z. B., Espiloy, E. B., & Moran, S. R. (1999). Basic properties of two lesser-used bamboo species: laak ( Bambusa sp. 2) and kayali ( Gigantochloa atter). Forest Products Research and Development Institute Journal, 25(1 & 2), 1–18. https://eurekamag.com/research/004/053/004053392.php?srsltid=AfmBOoqZ-ugqdnIcL-T4qRu5VojeyXG4w4-lq0KTI3HiSklQ1mqMCt6q

Evert, R. F. (2006). Esau’s plant anatomy: Meristems, cells, and tissues of the plant body — their structure, function, and development (3rd ed.). John Wiley & Sons. https://doi.org/10.1093/aob/mcm015

Fahn, A. (1990). Plant anatomy (4th ed.). Pergamon Press. https://books.google.com/books/about/Plant_Anatomy.html?id=Y37wAAAAMAAJ

Feng, J. Q., Wang, J. H., & Zhang, S. B. (2022). Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature. Plant Diversity, 44(1), 101–108. https://doi.org/10.1016/j.pld.2021.05.001

Flores, H. M. C. M., Quimado, M. O., Tinio, C. E., Maldia, L. S. J., & Combalicer, M. S. (2021). Morphological and leaf anatomical characteristics of different variants of narra ( Pterocarpus indicus Willd.) seedlings. Philippine Journal of Science, 150(1), 277–289. https://www.researchgate.net/publication/349106012_Morphological_and_Leaf_Anatomical_Characteristics_of_Different_Variants_of_Narra_Pterocarpus_indicus_Willd_Seedlings

Food and Agriculture Organization of the United Nations. (2014). Promotion of underutilized indigenous food resources for food security and nutrition in Asia and the Pacific (P. Durst, Ed.). Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/i3685e

Fortunel, C., Fine, P. V. A., & Baraloto, C. (2012). Leaf, stem, and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 26(5), 1153–1161. https://doi.org/10.1111/j.1365-2435.2012.02020.x

Garcia-Cervigón, A. I., Fajardo, A., Caetano-Sánchez, C., Camarero, J. J., & Olano, J. M. (2020). Xylem anatomy needs to change, so that conductivity can stay the same: xylem adjustments across elevation and latitude in Nothofagus pumilio. Annals of Botany, 125(7), 1101–1112. https://doi.org/10.1093/aob/mcaa042

Guo, Z., Lin, H., Chen, S., & Yang, Q. (2018). Altitudinal patterns of leaf traits and leaf allometry in bamboo ( Pleioblastus amarus ). Frontiers in Plant Science, 9, 1110. https://doi.org/10.3389/fpls.2018.01110

Hernandez, J. O., & Park, B. B. (2022). The leaf trichome, venation, and mesophyll structural traits play important roles in the physiological responses of oak seedlings to water-deficit stress. International Journal of Molecular Sciences, 23(15), 8640. https://doi.org/10.3390/ijms23158640

Hernandez, J. O., Quimado, M. O., Fernando, E. S., Pulan, D. E., Malabrigo Jr., P. L., & Maldia, L. S. (2019). Functional traits of stem and leaf of Wrightia candollei S. Vidal. Philippine Journal of Science, 148(2). 307-3014.https://scholar.google.com/citations?view_op=view_citation&hl=en&user=W-SZ_v0AAAAJ&citation_for_view=W-SZ_v0AAAAJ:W7OEmFMy1HYC

Hernandez, J. O., Malabrigo Jr., P. L., Quimado, M. O., Maldia, L. S., & Fernando, E. S. (2016). Xerophytic characteristics of Tectona philippinensis Benth. & Hook. f. Philippine Journal of Science, 145(3), 259–269.https://scholar.google.com/citations?view_op=view_citation&hl=en&user=W-SZ_v0AAAAJ&citation_for_view=W-SZ_v0AAAAJ:UeHWp8X0CEIC

Holmes, M. G., & Keiller, D. R. (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant, Cell & Environment, 25(1), 85–93. https://doi.org/10.1046/j.1365-3040.2002.00779.x

Kellogg, R. M., & Thykeson, E. (1975). Predicting kraft mill paper strength from fiber properties. TAPPI Journal, 58(4), 131–135. J-GLOBAL+1

Khoury, C. K., Brush, S., Costich, D. E., Curry, H. A., de Haan, S., Engels, J. M. M., Guarino, L., Hoban, S., Mercer, K. L., Miller, A. J., Nabhan, G. P., Perales, H. R., Richards, C., Riggins, C., & Thormann, I. (2022). Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytologist, 233(1), 84–118. https://doi.org/10.1111/nph.17733

Kiaei, M., Moosavi, V., & Ebadi, S. E. (2019). Effects of altitude on anatomical and physical properties of hornbeam wood (Carpinus betulus). Forest Systems, 28(2), e011. https://doi.org/10.5424/fs/2019282-14490

Liu, X., Wang, X., Zhu, J., Wang, X., Chen, K., Yuan, Y., Yang, X., Mo, W., Wang, R., & Zhang, S. (2024). Strong conservatism in leaf anatomical traits and their multidimensional relationships with leaf economic traits in grasslands under different stressful environments. Ecological Processes, 13, 71. https://doi.org/10.1186/s13717-024-00548-y

Malešević, Z., Govedarica-Lučić, A., Bošković, I., Petković, M., Đukić, D., & Đurović, V. (2023). Influence of different nutrient sources and genotypes on the chemical quality and yield of lettuce. Archives for Technical Sciences, 2(29), 49–56. https://doi.org/10.59456/afts.2023.1529.049M

Manetas, Y. (2003). The importance of being hairy: The adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytologist, 158, 503-508. https://doi.org/10.1046/j.1469-8137.2003.00768.x

Mayr, S., Schwienbacher, F., & Bauer, H. (2003). Winter at the alpine timberline. Why does embolism occur in Norway spruce but not in stone pine? Plant Physiology, 131(2), 780–792. https://doi.org/10.1104/pp.011452

Merino, G., Ramírez-Barahona, S., Olson, M. E., Núñez-Farfán, J., García-Oliva, F., & Eguiarte, L. E. (2023). Distribution and morphological variation of tree ferns (Cyatheaceae) along an elevation gradient. PLoS ONE, 18(9), e0291945. https://doi.org/10.1371/journal.pone.0291945

Miranda, C. T., Olinares, R. B., Corales, R. R., Corales, V. T., Bulda, S. M., & Acosta, M. M. (2018). Development and promotion of fruit tree industry in Region 02, Philippines. Acta Horticulturae, 1213, 87–94. https://doi.org/10.17660/ActaHortic.2018.1213.11

Nie, W., Dong, Y., Liu, Y., Tan, C., Wang, Y., Yuan, Y., Ma, J., An, S., Liu, J., Xiao, W., Jiang, Z., Jia, Z., & Wang, J. (2023). Climatic responses and variability in bark anatomical traits of 23 Picea species. Frontiers in Plant Science, 14, 1201553. https://doi.org/10.3389/fpls.2023.1201553

Nielsen, S. S., Arx, G. v., Damgaard, C. F., Abermann, J., Buchwal, A., Büntgen, U., Treier, U.A., Barfod, A.S., & Normand, S. (2017). Xylem anatomical trait variability provides insight on the climate–growth relationship of Betula nana in western Greenland. Arctic, Antarctic, and Alpine Research, 49(3), 359–371. https://doi.org/10.1657/AAAR0016-041

Ogbonnaya, C. I., Roy-Macauley, H., Nwalozie, M. C., & Annerose, D. J. M. (1997). Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Industrial Crops and Products, 7(1), 9–18. https://doi.org/10.1016/S0926-6690(97)00034-4

Oluwadare, A. O., & Ashimiyu, A. (2007). The relationship between fiber characteristics and pulp-sheet properties of hardwood species in Nigeria. Journal of Tropical Forest Science, 2(2) 63–68. https://sid.ir/paper/617779/en

Paudel, B. R., Dyer, A. G., Garcia, J. E., & Shrestha, M. (2019). The effect of elevational gradient on alpine gingers (Roscoea alpina and R. purpurea) in the Himalayas. PeerJ, 7, e7503. https://doi.org/10.7717/peerj.7503

Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology, 127(4), 1513–1523. https://doi.org/10.1104/pp.010816

Qaderi, M. M., Martel, A. B., & Dixon, S. L. (2019). Environmental factors influence plant vascular system and water regulation. Plants, 8(3), 65. https://doi.org/10.3390/plants8030065

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna.

https://www.R-project.org/

Saikia, C. N., Goswami, T., & Ali, F. (1997). Evaluation of pulp and paper making characteristics of certain fast-growing plants. Wood Science and Technology, 31(6), 467–475. https://doi.org/10.1007/BF00702569

Salmon, Y., Dietrich, L., Sevanto, S., Hölttä, T., Dannoura, M., & Epron, D. (2019). Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiology, 39(2), 173–191. https://doi.org/10.1093/treephys/tpy153

Sarker, G. C., Zahan, R., Alam, M. B., Islam, M. S., Mosaddik, M. A., & Haque, M. E. K. (2011). Antibacterial activity of Flacourtia jangomas and Flacourtia sepiaria. International Journal of Pharmaceutical and Life Sciences, 2(7), 878–883. https://www.academia.edu/102232132/Antibacterial_activity_of_Flacourtia_jangomas_and_Flacourtia_sepiaria

Sasi, S., Anjum, N., & Tripathi, Y. (2018). Ethnomedicinal, phytochemical and pharmacological aspects of Flacourtia jangomas: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 10(3), 9–15 https://doi.org/10.22159/ijpps.2018v10i3.23998

Syofyan, L., Maideliza, T., & Syamsuardi, M. (2018). Variation of wood density and anatomical characters from altitude differences: Case study of selected Fabaceae trees in West Sumatra secondary forest, Indonesia. KnE Engineering, 4(2), 190–203. https://doi.org/10.18502/keg.v1i2.4444

Taiz, L. and Zeiger, E. (2010) Plant Physiology. 5th Edition, Sinauer Associates Inc., Sunderland, 782 p. https://books.google.com/books/about/Plant_Physiology.html?id=uPesjgEACAAJ

Tamba Sompila, A. W. G., Pambou-Tobi, N. P. G., Elenga, M., Kimpouni, V., Tsiba, G., Mavoungou, L.-S. K. D., & Matos, L. (2024). Evaluation of secondary metabolites followed by antioxidant dosage of Flacourtia jangomas fruits from Congo. Journal of Pharmacognosy and Phytochemistry, 13(3), 377–384. https://doi.org/10.22271/phyto.2024.v13.i3e.14977

Thadani, R., Berlyn, G. P., & Ashton, M. S. (2009). A comparison of leaf physiology and anatomy of two Himalayan oaks in response to different light environments. Journal of Sustainable Forestry, 28(1–2), 74–91. https://doi.org/10.1080/10549810802626159

Tian, M., Yu, G., He, N., & Hou, J. (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Scientific Reports, 6(1), 19703. https://doi.org/10.1038/srep19703

Tripathi, S. N., Sahney, M., Tripathi, A., Pandey, P., Jatav, H. S., Minkina, T., & Rajput, V. D. (2023). Elucidating the anatomical features, adaptive and ecological significance of Kopsia fruticosa Roxb. (Apocynaceae). Horticulturae, 9(3), 387. https://doi.org/10.3390/horticulturae9030387

Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254. https://doi.org/10.1016/j.indcrop.2003.10.006

Villareal, J., De Guzman, W., Cortado, J. M., & Poclis, C. (2022). Fiber morphology of arangen (Ganophyllum falcatum Blume) stemwood and branchwood in San Gabriel, La Union, Philippines. Ecosystems and Development Journal, 12(2), 97–102. https://www.researchgate.net/publication/371346903_Fiber_morphology_of_arangen_Ganophyllum_falcatum_Blume_stemwood_and_branchwood_in_San_Gabriel_La_Union_Philippines

Villareal, J. F., Untong, R. U., Mispil, A. U., Poclis, C. E., Numeron, C. M. S., & Marasigan, O. S. (2025). Comparative fiber morphology of four underutilized native tree species in Maguindanao, Philippines. Environment and Natural Resources Journal, 23(4), 299–310. https://doi.org/10.32526/ennrj/23/20240311

Vitasse, Y., Delzon, S., Bresson, C. C., Michalet, R., & Kremer, A. (2009). Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Journal, 39(7), 1259–1269. https://doi.org/10.1139/X09-054

Wang, Y., Deng, Y., Zhao, H., Li, F., Fan, Z., Tian, T., & Feng, T. (2025). Patterns of change in plant leaf functional traits along an altitudinal gradient in a karst climax community. Agronomy, 15(5), 1143. https://doi.org/10.3390/agronomy15051143

Wu, R., Lev-Yadun, S., Sun, L., Sun, H., & Song, B. (2021). Higher elevations tend to have higher proportions of plant species with glandular trichomes. Frontiers in Plant Science, 12, 632464. https://doi.org/10.3389/fpls.2021.632464

Wuenscher, J. E. (1970). The effect of leaf hairs of Verbascum thapsus on leaf energy exchange. New Phytologist, 69(1), 65–73. https://doi.org/10.1111/j.1469-8137.1970.tb04050.x

Yang, J., Chen, G., Chong, P., Yang, K., Zhang, J., & Wang, M. (2022). Variation in leaf anatomical traits of Betula albosinensis at different altitudes reflects the adaptive strategy to environmental changes. ScienceAsia, 48(2), 188–195. https://doi.org/10.2306/scienceasia1513-1874.2022.030

Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E., & Coomes, D. A. (2010). Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97(2), 207–215. https://doi.org/10.3732/ajb.0900178

Zhang, Y., Jyske, T., Pumpanen, J., Hölttä, T., Gao, Q., Berninger, F., & Duan, B. (2021). Adaptation of Abies fargesii var. faxoniana (Rehder et E. H. Wilson) Tang S. Liu seedlings to high altitude in a subalpine forest in southwestern China with special reference to phloem and xylem traits. Annals of Forest Science, 78, 85. https://doi.org/10.1007/s13595-021-01095-8

Zhang, H. F., Liu, Y., Huangfu, S., Zhang, B., Ma, H., Ma, H., Wang, J., Li, H., He, H., Wang, Y., Song, H., & Yang, X. (2025). Elevational variation in leaf anatomical and stomatal traits and their allometric relationships of Quercus variabilis from a warm-temperate forest. Photosynthesis Research, 163, Article 39. https://doi.org/10.1007/s11120-025-01161-6

Zhao, Y., Sun, M., Guo, H., Feng, C., Liu, Z., & Xu, J. (2022). Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO₂ concentrations. Botanical Studies, 63(2). https://doi.org/10.1186/s40529-022-00331-2

Zobel, B.J. and Van Buijtenen, J.P. (2012) Wood Variation: Its Causes and Control. Springer Science & Business Media, Berlin. https://books.google.co.in/books?id=wsnqCAAAQBAJ&printsec=frontcover

Submitted

2025-09-29

Accepted

2025-11-11

Published

2025-12-10

How to Cite

Soriano, R. M., Camacho, C. F., Olbinado-Quillope, R. A. G., Cortado, J. M. G., & Villareal, J. F. (2025). Leaf and stem anatomy and wood fiber morphology of Seriales (Flacourtia jangomas) at different elevations in La Union, Philippines. Annals of Tropical Research, 47(2), 155–175. https://doi.org/10.32945/atr47211.2025

Issue

Section

Original Research Article

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.