Screening sweetpotato (Ipomoea batatas) varieties for tolerance to waterlogging stress

Authors

  • Wences Rey B. Dela Peña Department of Agronomy, Visayas State University, Baybay City, Leyte, 6521, Philippines https://orcid.org/0009-0008-5684-572X
  • Ma. Lourdes S. Edaño Institute of Crop Science, University of the Philippines, Los Baños, Laguna, 4030, Philippines
  • Eureka Teresa M. Ocampo Institute of Crop Science, University of the Philippines, Los Baños, Laguna, 4030, Philippines
  • Ronaldo B. Saludes Institute of Crop Science, University of the Philippines, Los Baños, Laguna, 4030, Philippines
  • Pompe C. Sta. Cruz Institute of Agricultural and Biosystems Engineering, University of the Philippines, Los Baños, Laguna, 4030, Philippines

DOI:

https://doi.org/10.32945/atr47210.2025

Keywords:

sweetpotato, tolerant varieties, waterlogging stress

Abstract

Waterlogging is one of the most damaging environmental stresses for sweetpotato, severely constraining the growth, yield, and overall quality of the storage roots. Hence, identifying potential waterlogging-tolerant sweetpotato varieties plays a significant role in breeding and sustainable crop management in areas prone to waterlogging stress. A screenhouse trial was conducted following a split-plot design with two main plots (waterlogging/non-waterlogging) and 15 subplot factors (varieties) arranged in a completely randomized design. Among waterlogging treatments, significant differences were observed in chlorophyll content (SPAD), vine dry weight, number of storage roots, storage root dry weight, harvest index, and root-shoot ratio. However, no significant difference was found among waterlogging treatments in six parameters: length of the main vine, number of lateral vines, root dry weight, root volume, root length, and total biomass. Waterlogged plants had lower chlorophyll content, heavier vine dry weight, fewer storage roots per plant, and storage roots dry weight, which led to significantly lower harvest index and root-shoot ratio. NSIC Sp36 showed higher root dry weight and root volume, indicating root proliferation under waterlogging stress. NSIC Sp34 showed significantly more storage roots, while the heaviest storage roots were observed in NSIC Sp30, indicating fewer but bigger storage roots resulting in significantly higher total biomass, harvest index, and root-shoot ratio. This indicates NSIC Sp30 and NSIC Sp34 have potential tolerance to waterlogging stress.

References

Egnin, M., Vaughan, B., & Mortley, D. (2012). Sweetpotato. In Handbook of Bioenergy Crop Plants. https://www.academia.edu/13968403/Sweetpotato

Eguchi, T., & Yoshida, S. (2007). Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (L.) Lam.). Environmental Control in Biology, 45(2), 103–111. https://www.jstage.jst.go.jp/article/ecb/45/2/45_2_103/_article

Eguchi, T., Ito, Y., & Yoshida, S. (2015). Instantaneous flooding and α-tocopherol content in tuberous roots of sweet potato (Ipomoea batatas (L.) Lam). Environmental Control in Biology, 53(1), 13-16. https://www.jstage.jst.go.jp/ article/ecb/53/1/53_13/_pdf/-char/en

Grzesiak, M. T., Janowiak, F., Szczyrek, P., Kaczanowska, K., Ostrowska, A., Rut, G., Hura, T., Rzepka, A., & Grzesiak, S. (2016). Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum, 38(5), 109. https://doi.org/10.1007/s11738-016-2128-4

Jackson, W. A. (1967). Physiological effects of soil acidity. In R. W. Pearson & F. Adams (Eds.), Soil Acidity and Liming (Agronomy 12, pp. 43–124).https://agrosphere-international.net/Documents/DHC/Soil%20Acidity%20and%20Liming.pdf

Jones, B. J. J. (2001). Laboratory guides for conducting soil tests and plant analysis. CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/9781420025293/laboratory-guide-conducting-soil-tests-plant-analysis-jr-benton-jones

Jiang, Z., Wei, Z., Zhang, J., Zheng, C., Zhu, H., Zhai, H., He, S., Gao, S., Zhao, N., Zhang, H., & Liu, Q. (2024). Source-sink synergy is the key unlocking sweet potato starch yield potential. Nature Communications, 15, 7260. https://doi.org/10.1038/s41467-024-51727-6

Landon, J. R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific and Technical. https://www.routledge.com/Booker-Tropical-Soil-Manual/Landon/p/book/9780582005570

Laurie, R. N., Laurie, S. M., du Plooy, C. P., Finnie, J. F., & Van Staden, J. (2015). Yield of drought-stressed sweet potato in relation to canopy cover, stem length and stomatal conductance. Journal of Agricultural Science, 7(1), 201–214. https://www.ccsenet.org/journal/index.php/jas/article/view/41648

Lewthwaite, S. L., & Triggs, C. M. (2000). Preliminary study on sweetpotato growth: I. Dry matter partitioning. Agronomy New Zealand, 30, 143–149.https://www.agronomysociety.nz/files/2000_21._Sweetpotato_-_I._DM_partitioning.pdf

Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47(4), 417–426. https://www.researchgate.net/publication/279590939

Nguyen, L. V., Le, T. M., Ta, P. V., Tran, G. H., Rumanzi, M. S., Tang, H. T., & Nguyen, L. V.(2020). Variation in root growth responses of sweet potato to hypoxia and waterlogging. Vegetos, 33, 367–375. https://link.springer.com/article/10.1007/s42535-020-00117-6

Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In Methods of Soil Analysis Part II. https://www.scirp.org/reference/referencespapers?referenceid=2002898

PCARR. Philippine Council for Agriculture and Resources Research. (1980). Standard methods of analysis for soil, plant tissue, water and fertilizer (194 p.). Farm, Resource and Systems Research Division, Los Baños, Laguna. https://books.google.com/books/about/Standard_Methods_of_Analysis_for_Soil_Pl.html?id=qX0_AAAAYAAJ

Pepo, P. (2018). The effect of different planting methods on the yield and SPAD readings of sweet potato (Ipomoea batatas L.). Columella: Journal of Agricultural and Environmental Sciences, 5(1), 7–12. https://real.mtak.hu/81769/1/PepC3B3_Columella_vol5no12018_7_12_u.pdf

Perata, P., Armstrong, W., & Voesenek, L. (2011). Plants and flooding stress. New Phytologist, 190(2), 269–273. https://doi.org/10.1111/j.1469-8137.2011.03702.x

Qi, X., Li, Q., Ma, X., Qian, C., Wang, H., Ren, N., Shen, C., Huang, S., Xu, X., Xu, Q., & Chen, X. (2019). Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signaling. Plant, Cell & Environment, 42(5), 1458–1470. https://doi.org/10.1111/pce.13504

Ramirez, G. P. (1992). Cultivation, harvesting and storage of sweet potato products. https://www.fao.org/4/T0554E/T0554E14.htm

Vartapetian, B. B., Andreeva, I. N., Generozova, I. P., Polyakova, L. I., Maslova, I. P., Dolgikh, Y. I., & Stepanova, A. Y. (2003). Functional electron microscopy in studies of plant responses and adaptation to anaerobic stress. Annals of Botany, 91(2), 155–172. https://doi.org/10.1093/aob/mcf244

Vwioko, E., Adinkwu, O., & El-Esawi, M. A. (2017). Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming. Frontiers in Physiology, 8:632. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00632/full

Xu, Z., Ye, L., Shen, Q., & Zhang, G. (2024). Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23(9), 2877–2897. https://doi.org/10.1016/j.jia.2023.12.028

Yamauchi, T., Pedersen, O., Nakazono, M., & Tsutsumi, N. (2021). Key root traits of Poaceae for adaptation to soil water gradients. New Phytologist, 229(6), 3133–3140. https://doi.org/10.1111/nph.17093

Yang, X. Y., Xiao, R. H., Zhang, L. X., Tang, M. J., Sun, G. Y., Du, K., Lyu, C. W., Tang, D. B., & Wang, J. C. (2025). Effects of waterlogging at different growth stages on stress-resistance physiological characteristics and yield formation of sweet potato. Acta Agronomica Sinica, 51(3), 744–754. https://zwxb.chinacrops.org/EN/Y2025/V51/I3/744

Submitted

2025-09-25

Accepted

2025-11-07

Published

2025-12-10

How to Cite

Dela Pena, W. R., Edaño, M. L. S., Ocampo, E. T. M., Saludes, R. B., & Sta. Cruz, P. C. (2025). Screening sweetpotato (Ipomoea batatas) varieties for tolerance to waterlogging stress. Annals of Tropical Research, 47(2), 136–154. https://doi.org/10.32945/atr47210.2025

Issue

Section

Original Research Article