Advancing pharmacovigilance through artificial intelligence: A review of applications and ethical considerations

Authors

  • Zhinya Kawa Othman Department of Pharmacy, Kurdistan Technical Institute, Sulaymaniyah, Kurdistan Region
  • Prisca Mirindi Nabashaho Department of Pharmacy, United States International University-Africa, Nairobi
  • Emmanuella Ojugbeli Faculty of Pharmacy, University of Benin, Benin
  • David Olpengs Health System Strengthening Department, Amref Health Africa. Nairobi
  • Mohamed Mustaf Ahmed Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu
  • Don Eliseo Lucero-Prisno III Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London

DOI:

https://doi.org/10.32945/atr47218.2025

Keywords:

Artificial intelligence, pharmacovigilance, adverse drug reaction, machine learning, applications, deep learning

Abstract

Artificial intelligence (AI) is increasingly applied in pharmacovigilance (PV) to identify, prioritize, and interpret adverse drug reactions (ADRs) across real-world data sources. This narrative review synthesizes recent peer-reviewed studies (2015 – 2024) and maps AI use across four domains: extraction of ADRs from social and clinical text, supervised and ensemble signal detection in spontaneous reporting systems and electronic health records (EHRs), knowledge-graph-based discovery of drug–event associations, and prediction of outcome seriousness to support triage. Across domains, implementations most consistently enhance intake, coding, prioritization, and the timeliness of safety assessment, while graph-based methods surface plausible associations for follow-up and seriousness models aid risk stratification. Cross-cutting challenges include heterogeneous and shifting data, annotation burden, class imbalance (especially for rare events), and concerns around transparency, privacy, and fairness. Evidence remains predominantly retrospective, with uneven external validation, underscoring the need for prospective studies, standardized reporting and calibration, fairness audits, and closer alignment with regulatory signal-management workflows spanning detection, validation, analysis, prioritization, and assessment. By clarifying where AI is already dependable and where methodological and ethical gaps persist, this review offers practical directions for integrating AI into routine PV with auditable thresholds, monitoring, and human oversight.

References

Badary, O. A. (2025). The Potential of Artificial Intelligence and Machine Learning in Pharmacovigilance: An Update. GenoMed Connect, 2(1), 1–10. https://doi.org/10.69709/GENOMC.2024.176699

Bae, J. H., Baek, Y. H., Lee, J. E., Song, I., Lee, J. H., & Shin, J. Y. (2021). Machine Learning for Detection of Safety Signals From Spontaneous Reporting System Data: Example of Nivolumab and Docetaxel. Frontiers in Pharmacology, 11. https://doi.org/10.3389/FPHAR.2020.602365,

Bean, D. M., Wu, H., Dzahini, O., Broadbent, M., Stewart, R., & Dobson, R. J. B. (2017). Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/S41598-017-16674-X;SUBJMETA=114,1305,1438,154,2401,631;KWRD=DATA+INTEGRATION,DRUG+SAFETY,MACHINE+LEARNING

Cherkas, Y., Ide, J., & van Stekelenborg, J. (2022). Leveraging Machine Learning to Facilitate Individual Case Causality Assessment of Adverse Drug Reactions. Drug Safety, 45(5), 571–582. https://doi.org/10.1007/S40264-022-01163-6/FIGURES/8

Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Van Calster, B., Ghassemi, M., Liu, X., Reitsma, J. B., Van Smeden, M., Boulesteix, A. L., Camaradou, J. C., Celi, L. A., Denaxas, S., Denniston, A. K., Glocker, B., Golub, R. M., Harvey, H., Heinze, G., … Logullo, P. (2024). TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 385. https://doi.org/10.1136/BMJ-2023-078378

Dimitsaki, S., Natsiavas, P., & Jaulent, M. C. (2024). Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review. Journal of Medical Internet Research, 26(1), e57824. https://doi.org/10.2196/57824

Harpaz, R., DuMouchel, W., Schuemie, M., Bodenreider, O., Friedman, C., Horvitz, E., Ripple, A., Sorbello, A., White, R. W., Winnenburg, R., & Shah, N. H. (2017). Toward multimodal signal detection of adverse drug reactions. Journal of Biomedical Informatics, 76, 41–49. https://doi.org/10.1016/J.JBI.2017.10.013,

Hendriksen, L. C., van der Linden, P. D., Lagro-Janssen, A. L. M., van den Bemt, P. M. L. A., Siiskonen, S. J., Teichert, M., Kuiper, J. G., Herings, R. M. C., Stricker, B. H., & Visser, L. E. (2021). Sex differences associated with adverse drug reactions resulting in hospital admissions. Biology of Sex Differences, 12(1), 34. https://doi.org/10.1186/S13293-021-00377-0

Hussain, S., Afzal, H., Saeed, R., Iltaf, N., & Umair, M. Y. (2021). Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM. Computational and Mathematical Methods in Medicine, 2021(1), 5589829. https://doi.org/10.1155/2021/5589829

Jeong, E., Park, N., Choi, Y., Park, R. W., & Yoon, D. (2018). Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals. PLOS ONE, 13(11), e0207749. https://doi.org/10.1371/JOURNAL.PONE.0207749

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 1–54. https://doi.org/10.1186/S40537-019-0192-5/FIGURES/2

Jung, J., Kim, J. H., Bae, J. H., Woo, S. S., Lee, H., & Shin, J. Y. (2024). A real-world pharmacovigilance study on cardiovascular adverse events of tisagenlecleucel using machine learning approach. Scientific Reports 2024 14:1, 14(1), 1–8. https://doi.org/10.1038/s41598-024-64466-x

Kiguba, R., Isabirye, G., Mayengo, J., Owiny, J., Tregunno, P., Harrison, K., Pirmohamed, M., & Ndagije, H. B. (2024). Navigating duplication in pharmacovigilance databases: a scoping review. BMJ Open, 14(4), e081990. https://doi.org/10.1136/BMJOPEN-2023-081990

Kompa, B., Hakim, J. B., Palepu, A., Kompa, K. G., Smith, M., Bain, P. A., Woloszynek, S., Painter, J. L., Bate, A., & Beam, A. L. (2022). Artificial Intelligence Based on Machine Learning in Pharmacovigilance: A Scoping Review. Drug Safety, 45(5), 477–491. https://doi.org/10.1007/S40264-022-01176-1/FIGURES/7

Lee, J. E., Kim, J. H., Bae, J. H., Song, I., & Shin, J. Y. (2022). Detecting early safety signals of infliximab using machine learning algorithms in the Korea adverse event reporting system. Scientific Reports 2022 12:1, 12(1), 1–12. https://doi.org/10.1038/s41598-022-18522-z

Li, F., Liu, W., & Yu, H. (2018). Extraction of information related to adverse drug events from electronic health record notes: Design of an end-to-end model based on deep learning. JMIR Medical Informatics, 6(4), e12159. https://doi.org/10.2196/12159

Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., & Denniston, A. K. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ, 370. https://doi.org/10.1136/BMJ.M3164

Martin, G. L., Jouganous, J., Savidan, R., Bellec, A., Goehrs, C., Benkebil, M., Miremont, G., Micallef, J., Salvo, F., Pariente, A., & Létinier, L. (2022). Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data. Drug Safety, 45(5), 535–548. https://doi.org/10.1007/S40264-022-01153-8/FIGURES/5

Medication Without Harm. (2017). WHO. https://www.who.int/initiatives/medication-without-harm

Nicholson, D. N., & Greene, C. S. (2020). Constructing knowledge graphs and their biomedical applications. Computational and Structural Biotechnology Journal, 18, 1414–1428. https://doi.org/10.1016/J.CSBJ.2020.05.017

Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., & Gonzalez, G. (2015). Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association, 22(3), 671–681. https://doi.org/10.1093/JAMIA/OCU041

Patient safety. (2023). WHO. https://www.who.int/news-room/fact-sheets/detail/patient-safety

Rivera, S. C., Liu, X., Chan, A. W., Denniston, A. K., & Calvert, M. J. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ, 370. https://doi.org/10.1136/BMJ.M3210

Salas, M., Petracek, J., Yalamanchili, P., Aimer, O., Kasthuril, D., Dhingra, S., Junaid, T., & Bostic, T. (2022). The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature. Pharmaceutical Medicine, 36(5), 295–306. https://doi.org/10.1007/S40290-022-00441-Z/FIGURES/1

Shukla, D., Bhatt, S., Gupta, D., & Verma, S. (2024). Role of Artifical Intelligence in Pharmacovigilance. Journal of Drug Discovery and Health Sciences, 1(04), 230–238. https://doi.org/10.21590/JDDHS.01.04.06

Stanovsky, G., Gruhl, D., & Mendes, P. N. (2017). Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models. In the Association for Computational Linguistics (Vol. 1, pp. 142–151). https://aclanthology.org/E17-1014/

The Pharmacovigilance System for Traditional Medicine in Thailand. (2017). http://apps.who.int/bookorders.

Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants, L., Steyerberg, E. W., Bossuyt, P., Collins, G. S., MacAskill, P., Moons, K. G. M., & Vickers, A. J. (2019). Calibration: the Achilles heel of predictive analytics. BMC Medicine, 17(1), 230. https://doi.org/10.1186/S12916-019-1466-7

Vasey, B., Nagendran, M., Campbell, B., Clifton, D. A., Collins, G. S., Denaxas, S., Denniston, A. K., Faes, L., Geerts, B., Ibrahim, M., Liu, X., Mateen, B. A., Mathur, P., McCradden, M. D., Morgan, L., Ordish, J., Rogers, C., Saria, S., Ting, D. S. W., … Perkins, Z. B. (2022). Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nature Medicine, 28(5), 924–933. https://doi.org/10.1038/S41591-022-01772-9;SUBJMETA=2779,308,479,575,648,692,706;KWRD=PUBLISHING,CLINICAL+TRIAL+DESIGN,TRANSLATIONAL+RESEARCH

Warner, J., Prada Jardim, A., & Albera, C. (2025). Artificial Intelligence: Applications in Pharmacovigilance Signal Management. Pharmaceutical Medicine, 39(3), 183–198. https://doi.org/10.1007/S40290-025-00561-2/TABLES/3

Watson, S., Caster, O., Rochon, P. A., & den Ruijter, H. (2019). Reported adverse drug reactions in women and men: Aggregated evidence from globally collected individual case reports during half a century. EClinicalMedicine, 17, 100188. https://doi.org/10.1016/j.eclinm.2019.10.001

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., Jung, K., Heller, K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-Israni, S., & Goldenberg, A. (2019). Author Correction: Do no harm: a roadmap for responsible machine learning for health care (Nature Medicine, (2019), 25, 9, (1337-1340), 10.1038/s41591-019-0548-6). Nature Medicine, 25(10), 1627. https://doi.org/10.1038/S41591-019-0609-X

Yang, X., Bian, J., Gong, Y., Hogan, W. R., & Wu, Y. (2019). MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes. Drug Safety, 42(1), 123–133. https://doi.org/10.1007/S40264-018-0761-0/TABLES/9

Zhao, H., Ni, P., Zhao, Q., Liang, X., Ai, D., Erhardt, S., Wang, J., Li, Y., & Wang, J. (2023). Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework. Communications Biology, 6(1), 1–14. https://doi.org/10.1038/S42003-023-05243-W;SUBJMETA=114,2397,308,409,631,692;KWRD=COMPUTATIONAL+MODELS,OUTCOMES+RESEARCH

Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34(13), i457–i466. https://doi.org/10.1093/BIOINFORMATICS/BTY294

Submitted

2025-09-19

Accepted

2025-12-06

Published

2025-12-10

How to Cite

Othman, Z. K., Nabashaho, P. M., Ojugbeli, E., Olpengs, D., Ahmed, M. M., & Lucero-Prisno III, D. E. (2025). Advancing pharmacovigilance through artificial intelligence: A review of applications and ethical considerations. Annals of Tropical Research, 47(2), 290–303. https://doi.org/10.32945/atr47218.2025

Issue

Section

Review Article

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.