Antioxidant effect of black seed oil (Nigella sativa) on blood and meat in rabbits simultaneously stressed by transport and heat

Authors

  • Rachchad Khadija Ecology and Environment, Hassan II University of Casablanca, Ben M'Sick Faculty of Sciences, Morocco
  • Farh Mohamed Ecology and Environment, Hassan II University of Casablanca, Ben M'Sick Faculty of Sciences, Morocco
  • El Khasmi Mohammed Ecology and Environment, Hassan II University of Casablanca, Ben M'Sick Faculty of Sciences, Morocco https://orcid.org/0000-0003-4851-1179

DOI:

https://doi.org/10.32945/atr4725.2025

Keywords:

stress, transport, heat, Nigella, rabbit, Morocco

Abstract

Transportation and heat are crucial stressors that affect animal welfare and homeostasis, as well as the organoleptic and sensory quality of meat in livestock animals. This study evaluated the antioxidant effect of Nigella oil in rabbits exposed simultaneously to transport and heat. Five groups (Gr) of 5 rabbits were acclimatized at 22-24°C for 60 days. During this period, Gr1, Gr2, and Gr3 received orally at 10am 2.5mL NaCl (0.9%.kg-1day-1 ), while in the same way Gr4 and Gr5 received 2 and 3mL NOkg-1, respectively. At the end of the treatment, Gr 1 was left exposed to 22-24°C, and Gr2 was exposed to 33-34°C for 1h and 30mins, and then non-transported. Meanwhile, Gr3, Gr4, and Gr5 were transported (80km) at 33±1°C. Blood was collected to analyze Neutrophil/Lymphocyte ratio (NLR), glucose, malondialdehyde (MDA) and Catalase (CAT), and superoxide dismutase (SOD). Muscle samples (longissimus dorsi) were collected to analyze the ultimate pH (pHu), MDA, and cooking loss (CL). In non-pretreated and non-transported rabbits, those exposed to heat (Gr2) showed a significant (p < .05) increase in NLR, glucose, MDA, pHu, and CL, associated with a significant (p < .05) decrease in SOD and CAT, compared to those exposed to thermal neutrality (Gr1). In non-pretreated rabbits, transport association with heat (Gr3) significantly increased (p < .05) NLR, glucose, MDA, pHu, and CL, and significantly decreased (p < .05) CAT and SOD compared to the heat alone group (Gr2). In transported rabbits under heat (Gr4), the pretreatment (2mL NOkg-1d-1 ) significantly reduced ( p < .05) NLR, glucose, MDA, pHu, and CL, and increased (p < .05) CAT and SOD, compared to non-pretreated animals (Gr3). In conclusion, NO attenuated the oxidation induced by transport-associated heat in a dose-dependent manner, suggesting that Nigella seeds could be used as a dietary supplement against preslaughter stress in rabbits.

References

Abdel-Wareth, A. A. A., Taha, E. M. M., Südekum, K. H., & Lohakare, J. (2018). Thyme oil inclusion levels in a rabbit ration: Evaluation of productive performance, carcass criteria and meat quality under hot environmental conditions. Animal Nutrition, 4(4), 410–416. https://doi.org/10.1016/j.aninu.2018.02.004

Abdelnour, S. A., El-Ratel, I. T., Peris, S. I., El-Raghi, A. A., & Fouda, S. F. (2022). Effects of dietary thyme essential oil on blood haematobiochemical, redox status, immunological and reproductive variables of rabbit does exposed to high environmental temperature. Italian Journal of Animal Science, 21(1), 51–61. https://doi.org/10.1080/1828051X.2021.2006807

Alberts, A., Moldoveanu, E.-T., Niculescu, A.-G., & Grumezescu, A. M. (2024). Nigella sativa: A comprehensive review of its therapeutic potential, pharmacological properties, and clinical applications. International Journal of Molecular Sciences, 25(24), 13410. https://doi.org/10.3390/ijms252413410

AlGaradi, M. A., Sindi, R. A., Al-Gabrif, N., Mohamed, E. A., & Sameh, A. A. (2024). Effects of dietary thymoquinone inclusion on antioxidative, oxidative, proinflammatory responses, semen attributes and testicular changes in heat-stressed rabbit bucks. Annals of Animal Science, 24(1), 109-119. https://doi.org/10.2478/aoas-2023-0060

Amici, A., Franci, O., Mastroiacono, P., Merendino, N., Nardini, M., & Tomassi, G. (2000). Short term acute heat stress in rabbits: Functional, metabolic and immunological effects. World Rabbit Science, 8(1), 11–16. https://doi.org/10.4995/wrs.2000.412

Apalowo, O. O., Ekunseitan, D. A., & Fasina, Y. O. (2024). Impact of heat stress on broiler chicken production. Poultry, 3(2), 107–128. https://doi.org/10.3390/poultry3020010

Asghar, M. U., Doğan, S. C., Wilk, M., & Korczyński, M. (2022). Effect of dietary supplementation of black cumin seeds (Nigella sativa) on performance, carcass traits, and meat quality of Japanese quails (Coturnix coturnix japonica). Animals, 12(10), 1298. https://doi.org/10.3390/ani12101298

Bellavance, M. A., & Rivest, S. (2014). The HPA–immune axis and the immunomodulatory actions of glucocorticoids in the brain. Frontiers in Immunology, 5, 136. https://doi.org/10.3389/fimmu.2014.00136

Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., & Trakatellis, A. G. (1994). Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. Journal of Agricultural and Food Chemistry, 42(9), 1931–1937. https://pubs.acs.org/doi/10.1021/jf00045a019

Bouzekraoui, A. (2002). The Tadla Rabbits (Morocco). In M. H. Khalil & M. Baselga (Eds.), Rabbit genetic resources in Mediterranean countries (pp. 169–174). CIHEAM (Options Méditerranéennes: Série B. Études et Recherches, No. 38). https://om.ciheam.org/web/controleurFrontal.php?action=afficherArticle&IDPDF=2600021

Cherif, M., Valenti, B., Abidi, S., Luciano, G., Mattioli, S., Pauselli, M., Bouzarraa, I., Priolo, A., & Ben Salem, H. (2018). Supplementation of Nigella sativa seeds to Barbarine lambs raised on low- or high-concentrate diets: Effects on meat fatty acid composition and oxidative stability. Meat Science, 139, 134–141. https://doi.org/10.1016/j.meatsci.2018.01.022

Chiericato, G. M., Bailoni, L., & Rizzi, C. (1992). The effect of environmental temperature on the performance of growing rabbits. In Proceedings of the 5th World Rabbit Congress (pp. 723–731). Corvallis, Oregon, USA, July 25–30, 1992. http://world-rabbit-science.com/WRSA-Proceedings/Congress-1992-Corvallis/Communications-pdf/E01-CHIERICATO.pdf

Cockram, M. S., & Dulal, K. J. (2018). Injury and mortality in broilers during handling and transport to slaughter. Canadian Journal of Animal Science, 98(3), 416-432. https://doi.org/10.1139/cjas-2017-0076

Cunha, L. C. M., Monteiro, M. L. G., Lorenzo, J. M., Munekata, P. E. S., Muchenje, V., de Carvalho, F. A. L., & Conte-Junior, C. A. (2018). Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Research International, 111, 379-390. https://doi.org/10.1016/j.foodres.2018.05.041

Dalle Zotte, A., Pontalti, E., Cullere, M., Gerencsér, Zs., Matics, Zs., & Szendrő, Zs. (2025). Effect of heat stress on meat quality of growing rabbits divergently selected for body fat content. Italian Journal of Animal Science, 24(1), 13-24. https://doi.org/10.1080/1828051X.2024.2438840 Taylor & Francis Online+2ResearchGate+2

Dalle Zotte, A. (2002). Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livestock Production Science, 75, 11-32. https://doi.org/10.1016/S0301-6226(01)00308-6 ScienceDirect+2ResearchGate+2

El Bayomi, R. M., Shata, R. H., & Mahmoud, A. F. A. (2023). Effects of edible chitosan coating containing Salvia rosmarinus essential oil on quality characteristics and shelf-life extension of rabbit meat during chilled storage. Journal of Food Measurement and Characterization, 17, 2464-2474. https://doi.org/10.1007/s11694-023-01804-z

El Khasmi, M., Issaoub Allah, A., Farh, M., Riad, F., Safwate, A., El Abbadi, N., & Tahri, E. H. (2011). Effet de l’huile fixe de la nigelle (Nigella sativa L.) sur le profil des androgènes chez le rat mâle. Phytothérapie, 9(6), 338-342. https://doi.org/10.1007/s10298-011-0654-1 SpringerLink

El-Adawy, M. M., Salem, A. Z., Khodeir, M. H., Khusro, A., Elghandour, M. M., Hernández, S. R., & Al-Shamandy, O. A. (2020). Influence of four tropical medicinal and aromatic plants on growth performance, digestibility, and blood constituents of rabbits. Agroforestry Systems, 94(4), 1279-1289. https://doi.org/10.1007/s10457-018-0322-7

El-Ratel, I. T., Attia, K. A. H., El-Raghi, A. A., & Fouda, S. F. (2021). Relief of the negative effects of heat stress on semen quality, reproductive efficiency and oxidative capacity of rabbit bucks using different natural antioxidants. Animal Bioscience, 34(5), 844-854. https://doi.org/10.5713/ajas.20.0258

El-Tarabany, M. S., Ahmed-Farid, O. A., Nassan, M. A., & Salah, A. S. (2021). Oxidative stability, carcass traits, and muscle fatty acid and amino acid profiles in heat-stressed broiler chickens. Antioxidants, 10(11), 1725. https://doi.org/10.3390/antiox10111725

Farh, M., Kadil, Y., Tahri, E. H., Abounasr, M., Riad, F., El Khasmi, M., & Tazi, A. (2017). Évaluation des effets anxiolytiques, antidépressifs et mnésiques de l'huile des graines de la nigelle chez le rat. Phytothérapie. https://link.springer.com/article/10.1007/s10298-017-1095-7

Garner, J. B., Chamberlain, A. J., Vander Jagt, C., Nguyen, T. T. T., Mason, B. A., Marett, L. C., Leury, B. J., Wales, W. J., & Hayes, B. J. (2020). Gene expression of the heat stress response in bovine peripheral white blood cells and milk somatic cells in vivo. Scientific Reports, 10(1), 19181. https://doi.org/10.1038/s41598-020-75438-2

Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., & Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 162, 108025. https://doi.org/10.1016/j.meatsci.2019.108025

Harbuz, M. S., Jessop, D. S., Chowdrey, H. S., Blackwell, J. M., Larsen, P. J., & Lightman, S. L. (1995). Evidence for altered control of hypothalamic CRF in immune-mediated diseases. Annals of the New York Academy of Sciences, 771(1), 449–458. https://doi.org/10.1111/j.1749-6632.1995.tb44701.x

Hernández, P., & Dalle Zotte, A. (2010). Influence of diet on rabbit meat quality. In C. De Blas & J. Wiseman (Eds.), The nutrition of the rabbit (pp. 163–178). CABI Publishing. https://www.cabidigitallibrary.org/doi/10.1079/9781845936693.0163

Islam, M. A., Lomax, S., Doughty, A., Islam, M. R., Jay, O., Thomson, P., & Clark, C. (2021). Automated monitoring of cattle heat stress and its mitigation. Frontiers in Animal Science, 2, 737213. https://doi.org/10.3389/fanim.2021.737213

Jimoh, O. A., Ewuola, E. O., & Balogun, A. S. (2017). Oxidative stress markers in exotic breeds of rabbit during peak of heat stress in Ibadan, Nigeria. Journal of Advances in Biology & Biotechnology, 12(1), 1–9. https://doi.org/10.9734/JABB/2017/30437

Kuang, L. D., Li, C. Y., Guo, Z. Q., Ren, Y. J., Zheng, J., Mei, X. L., Yang, R., Xie, X. H., & Lei, M. (2021). Effects of heat stress on reproductive performance, serum biochemical indexes and reproductive hormones in female rabbits of Qixing. Southwest China Journal of Agricultural Sciences, 34(6), 1323–1329. https://doi.org/10.16213/j.cnki.scjas.2021.6.027

Kumari, K. N. R., & Nath, D. N. (2018). Ameliorative measures to counter heat stress in poultry. World’s Poultry Science Journal, 74(1), 117–130. https://doi.org/10.1017/S0043933917001003

Lara, L. J., & Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3(2), 356–369. https://doi.org/10.3390/ani3020356

Li, D. X., Yang, S. H., & He, J. B. (2010). The effect of heat stress on the levels of CAT and SOD in rabbit pituitary gland and hypothalamus. Advanced Veterinary Medical, 31, 77–80. https://doi.org/10.16437/j.cnki.1007-5038.2010.06.020

Li, M., Wang, W., Fang, W., & Li, Y. (2013). Inhibitory effects of chitosan coating combined with organic acids on Listeria monocytogenes in refrigerated ready-to-eat shrimps. Journal of Food Protection, 76(8), 1377–1383. https://doi.org/10.4315/0362-028X.JFP-12-516

Liang, Z. L., Chen, F., Park, S., Balasubramanian, B., & Liu, W. C. (2022). Impacts of heat stress on rabbit immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention. Frontiers in Veterinary Science, 9, 906084. https://doi.org/10.3389/fvets.2022.906084

Marai, I. F. M., Haeeb, A. A. M., & Gad, A. E. (2007). Biological functions in young pregnant rabbit does as affected by heat stress and lighting regime under subtropical conditions of Egypt. Tropical and Subtropical Agroecosystems, 7(3), 165–176. https://www.researchgate.net/publication/237042728_Biological_functions_in_young_pregnant_rabbit_does_as_affected_by_heat_stress_and_lighting_regime_under_subtropical_conditions_of_Egypt

Matics, Z., Gerencser, Z., Kasza, R., Terhes, K., Nagy, I., Radnai, A. D., Dalle Zotte, A., Cullere, M., & Szendrö, Z. I. (2021). Effect of ambient temperature on the productive and carcass traits of growing rabbits divergently selected for body fat content. Animal, 15(2), 100096. https://doi.org/10.1016/j.animal.2020.100096

Morshdy, A. M., Al Ashkar, A. T., & Mahmoud, A. F. A. (2021). Improving the quality and shelf life of rabbit meat during chilled storage using lemongrass and black seed oils. Journal of Animal Health and Production, 9(S1), 56–61. http://dx.doi.org/10.17582/journal.jahp/2021/9.s1.56.61

Nasr, A. M., Aboul Ela, S. E. S., Ismail, I. E., Aldhahrani, A., Soliman, M. M., Alotaibi, S. S., Bassiony, S. S., & Abd El-Hack, M. E. (2022). A comparative study among dietary supplementations of antibiotic, grape seed and chamomile oils on growth performance and carcass properties of growing rabbits. Saudi Journal of Biological Sciences, 29(4), 2483–2488. https://doi.org/10.1016/j.sjbs.2021.12.016

Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Depner, K., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Gortázar Schmidt, C., Michel, V., Miranda Chueca, M. Á., Roberts, H. C., Sihvonen, L. H., Stahl, K., Velarde Calvo, A., Viltrop, A., Winckler, C., Candiani, D., Fabris, C., … Spoolder, H. (2020). Stunning methods and slaughter of rabbits for human consumption. EFSA Journal, 18(1), e05927. https://doi.org/10.2903/j.efsa.2020.5927

Odhaib, K. J., Adeyemi, K. D., & Sazili, A. Q. (2018). Carcass traits, fatty acid composition, gene expression, oxidative stability and quality attributes of different muscles in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves and their combination. Asian-Australasian Journal of Animal Sciences, 31(8), 1345–1357. https://doi.org/10.5713/ajas.17.0468

Paoletti, F., Aldinucci, D., Mocali, A., & Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry, 154(2), 536–541. https://doi.org/10.1016/0003-2697(86)90026-6

Pop, R. M., Sabin, O., Suciu, Ș., Vesa, S. C., Socaci, S. A., Chedea, V. S., Bocsan, I. C., & Buzoianu, A. D. (2020). Nigella sativa’s anti-inflammatory and antioxidative effects in experimental inflammation. Antioxidants (Basel, Switzerland), 9(10), 921. https://doi.org/10.3390/antiox9100921

Rachchad, K., Tabite, R., Moussahil, A., Farh, M., & El Khasmi, M. (2024). Evaluation of Nigella seed oil effect against oxidant stress during ageing of camel meat. African Journal of Agricultural Research, 20(11), 998–1005. https://academicjournals.org/journal/AJAR/article-references/BA6B86072788

Rachchad, K., Farh, M., & El Khasmi, M. (2025). Antioxidant effect of Nigella oil on heated camel and rabbit meat. Theory and Practice of Meat Processing, 10(2), 120–127. https://www.meatjournal.ru/jour/article/view/458/0

Rahman, M., & Kim, S. J. (2016). Effects of dietary Nigella sativa seed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Italian Journal of Animal Science, 15(2), 241–247. https://doi.org/10.1080/1828051X.2016.1159925

Rasińska, E., Rutkowska, J., Czarniecka-Skubina, E., & Tambor, K. (2019). Effects of cooking methods on changes in fatty acids contents, lipid oxidation and volatile compounds of rabbit meat. LWT – Food Science and Technology, 110, 64–70. https://doi.org/10.1016/j.lwt.2019.04.067

Sabés-Alsina, M., Tallo-Parra, O., Mogas, M. T., Morrell, J. M., & López-Béjar, M. (2016). Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa. Animal Reproduction Science, 173, 18–23. https://doi.org/10.1016/j.anireprosci.2016.08.004

Simova, V., Voslarova, E., Vecerek, V., Passantino, A., & Bedanova, I. (2017). Effects of travel distance and season of the year on transport-related mortality in cattle. Animal Science Journal, 88(3), 526–532. https://doi.org/10.1111/asj.12658

Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. https://doi.org/10.1016/0003-2697(72)90132-7

Suba-Bokodi, É., Nagy, I., & Molnár, M. (2024). The impact of transportation on the cortisol level of dwarf rabbits bred for animal-assisted interventions. Animals, 14(5), 664. https://doi.org/10.3390/ani14050664

Voslarova, E., Vecerek, V., Bedanova, I., & Vecerkova, L. (2018). Mortality in rabbits transported for slaughter. Animal Science Journal, 89(6), 931–936. https://doi.org/10.1111/asj.13002

Zeferino, C. P., Komiyama, C. M., Fernandes, S., Sartori, J. R., Teixeira, P. S., & Moura, A. S. (2013). Carcass and meat quality traits of rabbits under heat stress. Animal: An International Journal of Animal Bioscience, 7(3), 518–523. https://doi.org/10.1017/S1751731112001838

Submitted

2025-09-13

Accepted

2025-10-09

Published

2025-12-10

How to Cite

Khadija, R., Mohamed, F., & Mohammed, E. K. (2025). Antioxidant effect of black seed oil (Nigella sativa) on blood and meat in rabbits simultaneously stressed by transport and heat. Annals of Tropical Research, 47(2), 60–75. https://doi.org/10.32945/atr4725.2025

Issue

Section

Original Research Article