Probiotics, Prebiotics and Bacteriocins as Alternatives to Antibiotics in the Livestock Industry – a Philippine Perspective

Authors

  • Rodney H. Perez National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños (UPLB), College, Laguna 4031 Philippines https://orcid.org/0000-0002-7524-5358

DOI:

https://doi.org/10.32945/atr47220.2025

Keywords:

lactic acid bacteria, bacteriocins, probiotics, prebiotics, antimicrobial resistance

Abstract

The widespread misuse and overuse of antibiotics in the animal industry have significantly accelerated the emergence of antimicrobial resistance (AMR), creating multidrug-resistant (MDR) strains that pose a serious threat to both animal and human health. This escalating problem risks reversing decades of medical progress, potentially returning healthcare to a pre-antibiotic era. In response, many countries have implemented policies restricting antibiotic use in livestock production; however, in developing nations such as the Philippines, enforcement remains weak due to limited resources, inadequate training of personnel, and the lack of effective, affordable alternatives to antibiotics. Addressing this issue requires not only stronger regulatory frameworks but also an aggressive information campaign that highlights the dangers of AMR and promotes sustainable solutions. Probiotics, which have been shown to improve animal health and productivity, represent a viable option, particularly when combined with prebiotics that can enhance their effectiveness. Nevertheless, challenges persist, as probiotic efficacy is highly strain-specific, and the market is increasingly saturated with products of unvalidated quality, often mislabeled due to weak oversight and the proliferation of e-commerce platforms. To maintain consumer confidence, probiotic strains must meet rigorous safety, functionality, and technological utility standards, with health benefits scientifically verified before approval. Advances in modern molecular biotechnology, particularly genome editing tools such as CRISPR-Cas9, offer powerful strategies to enhance probiotic strains by eliminating virulence genes and incorporating beneficial traits, including bacteriocin production. These genetically improved strains, when paired with prebiotics, could provide more consistent results, enhance livestock growth and productivity, and serve as effective, science-based alternatives to antibiotics. By fostering innovation, implementing stricter regulation, and promoting validated probiotic-prebiotic combinations, the livestock industry can reduce reliance on antibiotics while mitigating the global threat of MDR pathogens.

References

Anadón, A., Martínez-Larrañaga, M. R., Ares, I., & Martínez, M. A. (2016). Chapter 55–Probiotics: Safety and Toxicity Considerations. In R. C. Gupta (Ed.), Nutraceuticals (pp. 777–798). Academic Press. https://doi.org/10.1016/B978-0-12-802147-7.00055-3

Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190

Aversa, Z., Atkinson, E. J., Schafer, M. J., Theiler, R. N., Rocca, W. A., Blaser, M. J., & LeBrasseur, N. K. (2021). Association of infant antibiotic exposure with childhood health outcomes. Mayo Clinic Proceedings, 96(1), 66–77. https://doi.org/10.1016/j.mayocp.2020.07.019

Bacanlı, M. G. (2024). The two faces of antibiotics: An overview of the effects of antibiotic residues in foodstuffs. Archives of Toxicology, 98, 1717–1725. https://doi.org/10.1007/s00204-024-03760-z

Barroga, T. R. M., Morales, R. G., Benigno, C. C., Castro, S. J. M., Caniban, M. M., Cabullo, M. F. B., Agunos, A., Balogh, K. D., & Dorado-Garcia, A. (2020). Antimicrobials used in backyard and commercial poultry and swine farms in the Philippines: A qualitative pilot study. Frontiers in Veterinary Science, 7, 329. https://doi.org/10.3389/fvets.2020.00329

Ben Lagha, A., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, 22. https://doi.org/10.1186/s13567-017-0425-6

Choi, M.-J., Lim, S. K., Nam, H.-M., Kim, A. R., Jung, S.-C., & Kim, M.-N. (2011). Apramycin and gentamicin resistances in indicator and clinical Escherichia coli isolates from farm animals in Korea. Foodborne Pathogens and Disease, 8(1), 119–123. https://doi.org/10.1089/fpd.2010.0641

EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Cocconcelli, P. S., Fernández Escámez, P. S., Maradona, M. P., Querol, A., Suárez, J. E., Sundh, I., Vlak, J. M., Barizzone, F., Correia, S., & Herman, L. (2020). Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA Journal, 18(2), Article e05966. https://doi.org/10.2903/j.efsa.2020.5966

Food and Agriculture Organization of the United Nations, & World Health Organization. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Joint FAO/WHO Expert Consultation Report. http://www.fao.org/3/a0512e/a0512e.pdf

Field, D., Begley, M., O’Connor, P. M., Daly, K. M., Hugenholtz, F., Cotter, P. D., Hill, C., & Ross, R. P. (2012). Bioengineered nisin A derivatives with enhanced activity against both Gram-positive and Gram-negative pathogens. PLoS One, 7(10), e46884. https://doi.org/10.1371/journal.pone.0046884

Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151(2), 125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

Gekenidis, M.-T., Walsh, F., & Drissner, D. (2021). Tracing antibiotic resistance genes along the irrigation water chain to chive: Does tap or surface water make a difference? Antibiotics, 10(9), 1100. https://doi.org/10.3390/antibiotics10091100

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75

Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Zhou, H., Sanei, B., Chambers, J. R., & Sharif, S. (2006). Probiotics stimulate production of natural antibodies in chickens. Clinical and Vaccine Immunology, 13(9), 975–980. https://doi.org/10.1128/CVI.00161-06

Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between probiotic potential and safety concerns—An update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791

He, Y., Liu, X., Dong, Y., Lei, J., Ito, K., & Zhang, B. (2021). Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microbial Cell Factories, 20(1), 22. https://doi.org/10.1186/s12934-021-01609-z

Healy, B., Field, D., O’Connor, P. M., Hill, C., Cotter, P. D., & Ross, R. P. (2013). Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLOS ONE, 8(11), e79563. https://doi.org/10.1371/journal.pone.0079563

Helm, E. T., Curry, S., Trachsel, J. M., Schroyen, M., & Gabler, N. K. (2019). Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics. PLOS ONE, 14(4), e0216070. https://doi.org/10.1371/journal.pone.0216070

Henning, C., Gautam, D., & Muriana, P. (2015). Identification of multiple bacteriocins in Enterococcus spp. using an Enterococcus-specific bacteriocin PCR array. Microorganisms, 3(1), 1–16. https://doi.org/10.3390/microorganisms3010001

Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria: A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979

Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R., & Barrangou, R. (2019). Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences, 116(32), 15774–15783. https://doi.org/10.1073/pnas.1905421116

Hou, L., Cao, S., Qiu, Y., Xiong, Y., Xiao, H., Wen, X., Yang, X., Gao, K., Wang, L., & Jiang, Z. (2022). Effects of early sub-therapeutic antibiotic administration on body tissue deposition, gut microbiota and metabolite profiles of weaned piglets. Journal of the Science of Food and Agriculture, 102(13), 5913–5924. https://doi.org/10.1002/jsfa.11942

Islam, M. R., Shioya, K., Nagao, J., Nishie, M., Jikuya, H., Zendo, T., Nakayama, J., & Sonomoto, K. (2009). Evaluation of essential and variable residues of nukacin ISK-1 by NNK scanning. Molecular Microbiology, 72(6), 1438–1447. https://doi.org/10.1111/j.1365-2958.2009.06733.x

Jaber, H., Ajose, D. J., Fikraoui, N., Zaazoui, N., Goulart, D. B., Bourkhiss, B., Ateba, C. N., … Ouhssine, M. (2025). Assessing antibiotic residue presence in turkey meat: Insights from a four-box method analysis. BMC Microbiology, 25, Article 215. https://doi.org/10.1186/s12866-025-03936-2

Jensen, V. F., Jakobsen, L., Emborg, H. D., Seyfarth, A. M., & Hammerum, A. M. (2006). Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. Journal of Antimicrobial Chemotherapy, 58(1), 101–107. https://doi.org/10.1093/jac/dkl201

Khalifa, H. O., Shikoray, L., Mohamed, M.-Y. I., Habib, I., & Matsumoto, T. (2024). Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods, 13(11), 1629. https://doi.org/10.3390/foods13111629

Kumar, H., Bhardwaj, I., Nepovimova, E., Dhanjal, D. S., Shaikh, S. S., Knop, R., Atuahene, D., Shaikh, A. M., & Béla, K. (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. Journal of Agriculture and Food Research, 21, 101859. https://doi.org/10.1016/j.jafr.2025.101859

Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. https://doi.org/10.1016/j.aninu.2017.06.007

Marti, R., Scott, A., Tien, Y.-C., Murray, R., Sabourin, L., Zhang, Y., & Topp, E. (2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology, 79(18), 5701–5709. https://doi.org/10.1128/AEM.01682-13

Molloy, E. M., Field, D., O’Connor, P. M., Cotter, P. D., Hill, C., & Ross, R. P. (2013). Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLOS ONE, 8(3), e58530. https://doi.org/10.1371/journal.pone.0058530

Niewold, T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 86(4), 605–609. https://doi.org/10.1093/ps/86.4.605

O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

Perez, R. H., Aguimatang, R. H., Zendo, T., & Sonomoto, K. (2021). Bioengineering of the circular bacteriocin from Enterococcus faecium NKR-5-3 by NNK scanning to enhance its bioactivity. Journal of Microbiology, Biotechnology and Food Sciences, 11, 1–7. https://doi.org/10.15414/jmbfs.4309

Prentza, Z., Castellone, F., Legnardi, M., Antlinger, B., Segura-Wang, M., Kefalas, G., Papaioannou, N., Stylianaki, I., Papatsiros, V. G., Franzo, G., Cecchinato, M., & Koutoulis, K. (2023). Administration of a multi-genus synbiotic to broilers: Effects on gut health, microbial composition and performance. Animals, 13(1), 113.

Rahman, R. T., Fliss, I., & Biron, E. (2022). Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics, 11(6), 766. https://doi.org/10.3390/antibiotics11060766

Sinurat, A. P., Pasaribu, T., Purwadaria, T., Haryati, T., Wina, E., & Wardhani, T. (2020). Biological evaluation of some plant bioactives as feed additives to replace antibiotic growth promoters in broiler feeds. Indonesian Journal of Animal and Veterinary Sciences, 25(2), 81–90. https://doi.org/10.14334/jitv.v25i2.2501

Song, X., Huang, H., Xiong, Z., Ai, L., & Yang, S. (2017). CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Applied and Environmental Microbiology, 83(22), e01259-17. https://doi.org/10.1128/AEM.01259-17

Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., Polachek, A. J., Ganshorn, H., Sharma, N., Kellner, J. D., & Ghali, W. A. (2017). Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. The Lancet Planetary Health, 1(8), e316–e327. https://doi.org/10.1016/S2542-5196(17)30141-9

U.S. Food and Drug Administration. (2018, January 4). About the GRAS notification program. U.S. Department of Health & Human Services. https://www.fda.gov/food/generally-recognized-safe-gras/about-gras-notification-program

Wang, F., Sun, R., Hu, H., Duan, G., Meng, L., & Qiao, M. (2022). The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment, 828, 154463. https://doi.org/10.1016/j.scitotenv.2022.154463

Wang, J., Wang, S., Liu, H., Zhang, D., Wang, Y., & Ji, H. (2019). Effects of oligosaccharides on the growth and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of L. plantarum ZLP001 and fructo-oligosaccharide in post-weaning piglets. Journal of Animal Science, 97(11), 4588–4597. https://doi.org/10.1093/jas/skz254

World Health Organization. (2019). Global antimicrobial resistance and use surveillance system (GLASS) report: 2019. World Health Organization. https://www.who.int/publications/i/item/9789241515061

Yang, F., Zhang, F., Li, H., Wu, H., Zhao, H., Cheng, X., Ba, Y., Huang, H., Chen, S., & Zhu, J. (2021). Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 102, 103269. https://doi.org/10.1016/j.ejsobi.2020.103269

Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure—Consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656

Submitted

2025-07-28

Accepted

2025-08-30

Published

2025-12-10

How to Cite

Perez, R. H. (2025). Probiotics, Prebiotics and Bacteriocins as Alternatives to Antibiotics in the Livestock Industry – a Philippine Perspective. Annals of Tropical Research, 47(2), 319–333. https://doi.org/10.32945/atr47220.2025

Issue

Section

Review Article

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.