Species composition and characterization of Anopheline mosquito breeding habitats in Jos- South and Shendam Local Government areas of Plateau State, Nigeria

Authors

  • Mamani Nagyal Joseph Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria and National Commission for Nomadic Education, Kilometer 4, Kaduna -Zaria Express Way, Kaduna, Kaduna State, Nigeria. https://orcid.org/0009-0009-6924-4461
  • Titilayo Mary Abanise Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria https://orcid.org/0009-0001-5282-922X
  • Luka Isah Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria https://orcid.org/0009-0001-7156-1732
  • Eche Onah Otakpa Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria https://orcid.org/0000-0003-3264-1550
  • Namnim Nanvyat Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria https://orcid.org/0000-0001-6395-3675
  • Hayward Babale Mafuyai Applied Entomology and Parasitology Unit, Department of Zoology, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria https://orcid.org/0000-0001-9493-0871

DOI:

https://doi.org/10.32945/atr4722.2025

Keywords:

anopheline larvae, breeding, habitat, physicochemical parameters

Abstract

Mosquitoes play a critical role as agents of disease transmission, particularly where the abundance of breeding habitats supports their proliferation. Understanding the ecology of these vectors is crucial in assessing the potential risk of human exposure to the diseases they transmit and in controlling them. In this study, larvae of Anopheles mosquitoes were collected using the dip method from different habitats in Shendam and Jos-South Local Government Areas (LGAs) of Plateau State, Nigeria. Water physicochemical parameters were measured on-site using a handheld multi-parameter device. The larvae were reared to adults and identified using standard identification keys. Five breeding habitats, namely gutters, rain pools, rice fields, hoof prints, and puddles, were characterized, and their physicochemical parameters were analyzed. Overall, 2,513 larvae were reared to emergence as adults, with Anopheles gambiae as the dominant species, 1,279 (50.90%), and Anopheles pretoriensis, 175(6.95%) (p<0.001), the least collected species of the four Anopheline species encountered. The most abundant larval habitats were rice fields in Shendam LGA (51.09%) and rain pools in Jos South LGA (43.13%) (p<0.001). The water quality parameters analyzed showed a negative correlation with mosquito abundance. The R-squared value indicates that about 65.22% variation in mosquito abundance is accounted for by the water physicochemical parameters: temperature, pH, conductivity, total dissolved solids, and salinity. However, the variation was not significant, F (5, 6) = 2.25, p = 0.1759. For effective larval source management, initial risk mapping of mosquito breeding sites, combined with improved knowledge of vector ecology and their interactions with humans, should be prioritized to inform interventions against these vectors.

References

Afolabi, J., Akinneye, O. J., & Igiekhume, A. M. A. (2019). Identification, abundance, and diversity of mosquitoes in Akure South Local Government Area, Ondo State, Nigeria. Journal of Basic and Applied Zoology, 80(39), 1–7. https://doi.org/10.1186/s41936-019-0112-4

Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022). Effect of physicochemical parameters on Anopheles mosquitoes’ larval composition in Akure North Local Government Area of Ondo State, Nigeria. Journal of Basic and Applied Zoology, 83(34). https://doi.org/10.1186/s41936-022-00298-3

Bartilol, B., Omedo, I., Mbogo, C., Mwangangi, J., & Rono, M. K. (2021). Bionomics and ecology of Anopheles merus along the East and Southern Africa coast. Parasites & Vectors, 14(84). https://doi.org/10.1186/s13071-021-04582-z

Bayoh, M. N., & Lindsay, S. W. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93(5), 375–381. https://doi.org/10.1079/BER2003259

Belay, A. K., Asale, A., Sole, C. L., Yusuf, A. A., Torto, B., Mutero, C. M., & Tchouassi, D. P. (2024). Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasites & Vectors, 17(412). https://doi.org/10.1186/s13071-024-06496-y

Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R., & de Jager, C. (2018). Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites & Vectors, 11(29). https://doi.org/10.1186/s13071-017-2559-9

Chaiphongpachara, T., Yusuk, P., Laojun, S., & Kunphichayadecha, C. (2018). Environmental factors associated with mosquito vector larvae in a malaria-endemic area in Ratchaburi Province, Thailand. The Scientific World Journal, 2018, 4519094. https://doi.org/10.1155/2018/4519094

Coetzee, M. (2020). Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19, 70. https://doi.org/10.1186/s12936-020-3144-9

Ebhodaghe, F. I., Sanchez-Vargas, I., Isaac, C., Foy, B. D., & Hemming-Schroeder, E. (2024). Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malaria Journal, 23, 60. https://doi.org/10.1186/s12936-024-04871-9

Egbuche, C. M., Onyido, A. E., Akunna, F. G., Ogbonna, C. U., Ukonze, C. B., & Ezihe, C. K. (2019). Breeding habitats of Anopheles mosquitoes in a riverine locality of Anambra State: Types, preferences, availability and productivity. The Bioscientist, 9(2), 44–61. https://bioscientistjournal.com/index.php/The_Bioscientist/article/view/96

Emidi, B., Kisinza, W. N., Mmbando, B. P., Malima, R., & Mosha, F. W. (2017). Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites & Vectors, 10(1), 304. https://doi.org/10.1186/s13071-017-2238-x

Getachew, D., Balkew, M., & Tekie, H. (2020). Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malaria Journal, 19, 65. https://doi.org/10.1186/s12936-020-3145-8

Hasnana, A., Che Doma, N., Rostya, H., & Say Tyong, C. (2016). Quantifying the distribution and abundance of Aedes mosquitoes in dengue risk areas of Shah Alam, Selangor. Procedia - Social and Behavioral Sciences, 234, 154–163. https://doi.org/10.1016/j.sbspro.2016.10.230

Hessou-Djossou, D., Djègbè, I., Ahadji-Dabla, K. M., Nonfodji, O. M., Tchigossou, G., Djouaka, R., Cornelie, S., Djogbenou, L., Akogbeto, M., & Chandre, F. (2022). Diversity of larval habitats of Anopheles mosquitoes in urban areas of Benin and influence of their physicochemical and bacteriological characteristics on larval density. Parasites & Vectors, 15, 207. https://doi.org/10.1186/s13071-022-05323-6

Kipyab, P. C., Khaemba, B. M., Mwangangi, J. M., Mbogo, C. M., Beier, J. C., Zhou, G., Githeko, A. K., & Yan, G. (2015). The physicochemical and environmental factors affecting the distribution of Anopheles merus along the Kenyan coast. Parasites & Vectors, 8, 221. https://doi.org/10.1186/s13071-015-0819-0

Kyalo, D., Amratia, P., Mundia, C. W., Mbogo, C. M., Coetzee, M., & Snow, R. W. (2017). A geocoded inventory of Anophelines in the Afrotropical region south of the Sahara: 1898–2016. Wellcome Open Research, 2(57), 1–26. https://doi.org/10.12688/wellcomeopenres.12187.1

Lapang, P. M., Ombugadu, A., Ishaya, M., Mafuyai, M. J., Njila, H. L., Nkup, C. D., & Mwansat, G. S. (2019). Abundance and diversity of mosquito species larvae in Shendam LGA, Plateau State, North-Central Nigeria: A panacea for vector control strategy. Journal of Zoological Research, 3(3), 25–33. https://doi.org/10.22259/2637-5575.0303004

Mathania, M. M., Munisi, D. Z., & Silayo, R. S. (2020). Spatial and temporal distribution of Anopheles mosquito larvae and its determinants in two urban sites in Tanzania with different malaria transmission levels. Parasite Epidemiology and Control, 11, e00179. https://doi.org/10.1016/j.parepi.2020.e00179

Mattah, P. A. D., Futagbi, G., Amekudzi, L. K., Mattah, M. M., de Souza, D. K., Kartey-Attipoe, W. D., Bimi, L., & Wilson, M. D. (2017). Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasites & Vectors, 10, 25. https://doi.org/10.1186/s13071-016-1941-3

Musonda, M., & Sichilima, A. F. (2019). The effects of pH and temperature parameters of water on the abundance of Anopheles mosquito larvae in different breeding sites of Kapiri Mposhi District of Zambia. Academic Journal of Entomology, 12(1), 14–21. 7(1), 14–21. https://doi.org/10.5829/idosi.aje.2019.14.21

Mutero, C. M., Blank, H., Konradsen, F., & van der Hoek, W. (2000). Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Tropica, 76(3), 253–263. https://doi.org/10.1016/s0001-706x(00)00109-1

Muturi, E. J., Mwangangi, J., Shililu, J., Jacob, B. G., Mbogo, C., Githure, J., & Novak, R. J. (2008). Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. Journal of Vector Ecology, 33(1), 56–63. https://doi.org/10.3376/1081-1710(2008)33[56:efawtd]2.0.co;2

Nanvyat, N., Mulambalah, C. S., Barshep, Y., Dakul, D. A., & Tsingalia, H. M. (2017). Retrospective analysis of malaria transmission patterns and its association with meteorological variables in lowland areas of Plateau State, Nigeria. International Journal of Mosquito Research, 4(4), 101–106. https://www.dipterajournal.com/pdf/2017/vol4issue4/PartB/4-4-10-622.pdf

Obi, O. A., Nock, I. H., & Adebote, D. A. (2019). Biodiversity of microinvertebrates coinhabiting mosquitoes’ habitats in patchy rock pools on inselbergs within Kaduna State, Nigeria. Journal of Basic and Applied Zoology, 80, 57. https://doi.org/10.1186/s41936-019-0125-z

Odero, J. O., Nambunga, I. H., Wangrawa, D. W., Badolo, A., Weetman, D., Koekemoer, L. L., Ferguson, H. M., Okumu, F. O., & Baldini, F. (2023). Advances in the genetic characterization of the malaria vector Anopheles funestus, and implications for improved surveillance and control. Malaria Journal, 22, 230. https://doi.org/10.1186/s12936-023-04662-8

Oduwole, O. A., Oduola, A. O., Oringanje, C. M., Nwachuku, N. S., Meremikwu, M. M., Useh, M. F., & Alaribe, A. A. (2019). Distribution of members of the Anopheles gambiae complex in selected forested tourist areas of Cross River State, Nigeria. bioRxiv. https://doi.org/10.1101/805085

Ojianwuna, C. C., Enwemiwe, V. N., & Ekeazu, C. N. (2021). Abundance and distribution of Anopheles mosquitoes in relation to physicochemical properties in Delta State, Nigeria. FUDMA Journal of Science, 5(3), 274–280. https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/752

Okoh, H. I., Makanjuola, W. A., Otubanjo, O. A., & Awolola, S. (2017). Larvicidal activity of six Nigerian plant species against Anopheles gambiae and Aedes aegypti. Nigerian Journal of Parasitology, 38(1), 111–115. https://doi.org/10.4314/njpar.v38i1.20

Okwa, O. O., & Savage, A. A. (2018). Oviposition and breeding water sites preferences of mosquitoes within Ojo area, Lagos State, Nigeria. Biomedical Journal of Science & Technical Research, 7(5), 1–7. https://doi.org/10.26717/BJSTR.2018.07.001565

Ondiba, I. M., Oyieke, F. A., Athinya, D. K., Nyamongo, I. K., & Estambale, B. B. A. (2019). Larval species diversity, seasonal occurrence and larval habitat preference of mosquitoes transmitting Rift Valley fever and malaria in Baringo County, Kenya. Parasites & Vectors, 12, 295. https://doi.org/10.1186/s13071-019-3557-x

Silver, J. B. (2008). Mosquito ecology: Field sampling methods (3rd ed.). Springer. https://doi.org/10.1007/978-1-4020-6666-5

Sinka, M. E., Pironon, S., Massey, N. C., Longbottom, J., Hemingway, J., Moyes, C. L., & Willis, K. J. (2020). A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedings of the National Academy of Sciences, 117(40), 24900–24908. https://doi.org/10.1073/pnas.2003976117

Soltan-Alinejad, P., Bahrami, S., Keshavarzi, D., Shahriari-Namadi, M., Hosseinpour, A., & Soltani, A. (2023). Physicochemical characteristics of larval habitats and biodiversity of mosquitoes in one of the most important metropolises of southern Iran. Heliyon, 9(12), e22754. https://doi.org/10.1016/j.heliyon.2023.e22754

The PMI VectorLink Project. (2022, November). The PMI VectorLink Nigeria Project annual entomology report, October 1, 2021–September 30, 2022. VectorLink, Abt Associates Inc. https://stacks.cdc.gov/view/cdc/146400

Vivekanandhan, P., Karthi, S., Shivakumar, M. S., & Benelli, G. (2018). Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathogens and Global Health, 112(1), 37–46. https://doi.org/10.1080/20477724.2018.1438228

Wang, X., Zhou, G., Zhong, D., Wang, X., Wang, Y., Yang, Z., Cui, L., & Yan, G. (2016). Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites & Vectors, 9, 323. https://doi.org/10.1186/s13071-016-1611-5

Wilke, A. B. B., Carvajal, A., Medina, J., Anderson, M., Nieves, V. J., Ramirez, M., Vasquez, C., Petrie, W., Cardenas, G., & Beier, J. C. (2019). Assessment of the effectiveness of BG-Sentinel traps baited with CO₂ and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLOS ONE, 14(3), e0212688. https://doi.org/10.1371/journal.pone.0212688

Wilkerson, R. C., Linton, Y.-M., & Strickman, D. (2021). Mosquitoes of the world (Vols. 1–2). Johns Hopkins University Press. https://doi.org/10.1353/book.79680

World Health Organization. (2019). World malaria report 2019. World Health Organization. https://www.who.int/publications/i/item/9789241565721

World Health Organization. (2024). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

Zogo, B., Kofi, A. A., Alou, A. P. L., Fournet, F., Dahounto, A., Dabiré, K. R., Moussa, B. L., Moiroux, N., & Pennetier, C. (2019). Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d’Ivoire: A study prior to Bti-based larviciding intervention. Parasites & Vectors, 12, 146. https://doi.org/10.1186/s13071-019-3404-0

Submitted

2025-04-22

Accepted

2025-09-18

Published

2025-12-10

How to Cite

Joseph, M. N., Abanise, T. M., Isah, L., Otakpa, E. O., Nanvyat, N., & Mafuyai, H. B. (2025). Species composition and characterization of Anopheline mosquito breeding habitats in Jos- South and Shendam Local Government areas of Plateau State, Nigeria. Annals of Tropical Research, 47(2), 4–18. https://doi.org/10.32945/atr4722.2025

Issue

Section

Original Research Article

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.