Phytochemical extraction and in vitro UV/H2O2 photolysis induced DNA damage protection activity potential of cogon grass (Imperata cylindrica (L.) P. Beauv.) ground and aerial parts extracts

Authors

DOI:

https://doi.org/10.32945/atr4718.2025

Keywords:

Imperata cylindrica, crude extracts, fermented extracts, DNA Damage protective activity, phytochemicals

Abstract

Cogon grass (Imperata cylindrica (L.)P.Beauv.), a globally known invasive grass, has been studied for its application in DNA protective activity. However, most studies only utilized aerial cogon parts leaving the ground parts understudied. This study aimed to compare both ground and aerial cogon phytochemical extracts and its potential protective activity against damage to pUC19 plasmid DNA induced by reactive oxygen species. The total phytochemical analysis showed that the fermented leaf powder showed the highest phenolic and flavonoid content while chloroform root macerate had the lowest yield. Fermented root samples and fermentation control flavonoids were enzymatically hydrolyzed resulting in higher phenolic content. The DNA damage protection assay of the extracts was conducted by photolyzing the UV/H2O2 system to produce radical oxygen species inflicting DNA fragmentation. The scored bands showed that all chloroform extracts exhibited DNA damage protective activity. Among the fermented extracts, only fermented leaf macerate exhibited positive protective activity while fermented root samples showed excessive DNA damage, and fermented leaf powder with slight DNA damage. The results imply the potential of cogon grass extracts to be developed into cancer-preventive products and apoptotic regulators to minimize cancer proliferation.

References

Abu, F., Mat Taib, C. N., Mohd Moklas, M. A., & Mohd Akhir, S. (2017). Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. Evidence-Based Complementary and Alternative Medicine, 2017, Article 2907219. https://doi.org/10.1155/2017/2907219

Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927

Akbal, F., & Nur Onar, A. (2003). Photocatalytic degradation of phenol. Environmental Monitoring and Assessment, 83(3), 295–302. https://doi.org/10.1023/A:1022666322436

Cui, X., Liao, J., Liu, H., Tang, W., Tie, C., Tian, S., & Li, Y. (2023). Adsorption of phenols from aqueous solution with a pH-sensitive surfactant-modified bentonite. Separations, 10(10), 523. https://doi.org/10.3390/separations10100523

De Montijo-Prieto, S., Razola-Díaz, M. C., Barbieri, F., Tabanelli, G., Gardini, F., Jiménez-Valera, M., Ruiz-Bravo, A., Verardo, V., & Gómez-Caravaca, A. M. (2023). Impact of lactic acid bacteria fermentation on phenolic compounds and antioxidant activity of avocado leaf extracts. Antioxidants, 12(2), 298. https://doi.org/10.3390/antiox12020298

Estrella, M., Lu, A. L., & Lasin, S. (2020). Antimutagenic potential of Cogon (Imperata cylindrica) methanolic leaf extract in irradiated human male peripheral blood lymphocytes [Research project, Philippine Science High School]. ResearchGate. https://www.researchgate.net/publication/351108056_Antimutagenic_Potential_of_Cogon_Imperata_cylindrica_Methanolic_Leaf_Extract_in_Irradiated_Human_Male_Peripheral_Blood_Lymphocytes

Haminiuk, C. W. I., Plata-Oviedo, M. S. V., de Mattos, G., Carpes, S. T., & Branco, I. G. (2014). Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10), 2862–2866. https://doi.org/10.1007/s13197-012-0759-z

Hernandez, L., Espinosa, J. C., Fernandez-Gonzalez, M., & Briones, A. (2003). β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. International Journal of Food Microbiology, 80(2), 171–176. https://doi.org/10.1016/S0168-1605(02)00149-6

Indriyanti, R. A., Ariyanto, E. F., Usman, H. A., Effendy, R. R., & Dhianawaty, D. (2022). Quantification of total polyphenols and flavonoids, antioxidant activity, and sinensetin and imperatorin contents of Imperata cylindrica root ethanol extract. Pharmacognosy Journal, 14(4), 327–337. https://doi.org/10.5530/pj.2022.14.103

Jaradat, N., Hawash, M., & Dass, G. (2021). Phytochemical analysis, in-vitro anti-proliferative, anti-oxidant, anti-diabetic, and anti-obesity activities of Rumex rothschildianus Aarons extracts. BMC Complementary Medicine and Therapies, 21, Article 107. https://doi.org/10.1186/s12906-021-03282-6

Jung, Y.-K., & Shin, D. (2021). Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications. Molecules, 26(5), 1454. https://doi.org/10.3390/molecules26051454

Kaur, P., Purewal, S. S., Sandhu, K. S., & Kaur, M. (2019). DNA damage protection: An excellent application of bioactive compounds. Bioresources and Bioprocessing, 6, Article 2. https://doi.org/10.1186/s40643-019-0237-9

Keshava, R., Muniyappa, N., & Gope, R. (2020). Bioactivity guided fractionation and elucidation of anti-cancer properties of Imperata cylindrica leaf extracts. Asian Pacific Journal of Cancer Prevention, 21(3), 707–714. https://doi.org/10.31557/APJCP.2020.21.3.707

Kim, T.-H., Truong, V.-L., & Jeong, W.-S. (2022). Phytochemical composition and antioxidant and anti-inflammatory activities of Ligularia fischeri Turcz: A comparison between leaf and root extracts. Plants, 11(21), 3005. https://doi.org/10.3390/plants11213005

Lalthanpuii, P. B., Zarzokimi, & Lalchhandama, K. (2018). Some phytochemical analyses of different extracts of the cogon grass Imperata cylindrica from Mizoram, India. Science Vision, 18(4), 120–124. https://doi.org/10.33493/scivis.18.04.03

Li, Q., Chang, X., Guo, R., Wang, Q., & Guo, X. (2019). Dynamic effects of fermentation on phytochemical composition and antioxidant properties of wampee (Clausena lansium (Lour.) Skeel) leaves. Food Science & Nutrition, 7(1), 76–85. https://doi.org/10.1002/fsn3.795

Manalo, C. A. M., Arguelles, J. A. P., Bendaña, E. M., Comia, A. F. M., Ribao, M. R. B., & Dumaoal, O. S. R. (2020). In vitro antioxidant and DNA damage inhibition activity of ethanolic extract of Araucaria heterophylla (Salisb.) Franco (Norfolk Island pine). The Steth, 14, 31–45. https://research.lpubatangas.edu.ph/the-steth-vol-14-2020/

Metsopkeng, C. S., Nougang, M. E., Nana, P. A., Arfao, A. T., Bahebeck, P. N., Djimeli, C. L., Eheth, J. S., Ewoti, O. V. N., Moungang, L. M., Agbor, G. A., Perrière, F., Sime-Ngando, T., & Nola, M. (2020). Comparative study of Moringa stenopetala root and leaf extracts against the bacteria Staphylococcus aureus strain from aquatic environment. Scientific African, 10, e00549. https://doi.org/10.1016/j.sciaf.2020.e00549

Sari, K. R. P., Ikawati, Z., Danarti, R., & Hertiani, T. (2023). Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry, 16(9), 105003. https://doi.org/10.1016/j.arabjc.2023.105003

Schrader, T. J. (2016). Mutagens. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 20–28). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00476-1

Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(1), S359–S367. https://doi.org/10.12980/APJTB.4.2014C1030

Singla, R. K., Dubey, A. K., Garg, A., Sharma, R. K., Fiorino, M., Ameen, S. M., Haddad, M. A., & Al-Hiary, M. (2019). Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International, 102(5), 1397–1400. https://doi.org/10.5740/jaoacint.19-0133

Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231

Verma, K., Shrivastava, D., & Kumar, G. (2015). Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. Journal of Taibah University for Science, 9(1), 34–40. https://doi.org/10.1016/j.jtusci.2014.07.001

Visayas State University, Department of Biotechnology. (2024). [Google Maps]. Google. https://www.google.com/maps/place/10%C2%B044’50.9%22N+124%C2%B047’31.8%22E/@10.7474047,124.7921791,53m/data=!3m1!1e3!4m4!3m3!8m2!3d10.74746!4d124.792163?entry=ttu

World Health Organization. (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer

Yan Kwok, A. H., Wang, Y., & Ho, W. S. (2016). Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine, 23(5), 558–565. https://doi.org/10.1016/j.phymed.2016.02.015

Yogo, K., Murayama, C., Hirayama, R., Matsumoto, K., Nakanishi, I., Ishiyama, H., & Yasuda, H. (2021). Protective effects of amino acids on plasmid DNA damage induced by therapeutic carbon ions. Radiation Research, 196(2), 197–203. https://doi.org/10.1667/RADE-21-00033.1

Submitted

2025-02-06

Published

2025-06-30

How to Cite

Gonzales, L. A. (2025). Phytochemical extraction and in vitro UV/H2O2 photolysis induced DNA damage protection activity potential of cogon grass (Imperata cylindrica (L.) P. Beauv.) ground and aerial parts extracts. Annals of Tropical Research, 47(1), 103–121. https://doi.org/10.32945/atr4718.2025

Issue

Section

Original Article

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.