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ABSTRACT 
 

Estimation of the magnitude of sinks and sources of carbon requires reliable 
estimates of the biomass of forests and of individual trees. Equations for predicting 
tree biomass have been developed using secondary data involving destructive 
sampling in plantations (mostly less than 10 years of age) in several localities in the 
Philippines. These equations allow estimates of carbon sequestration to be made at 
much lower cost than would be incurred if detailed stand inventories were undertaken. 
The species included in the study reported here include Gmelina arborea Roxb., 
Paraserianthes falcataria (L.) Nielsen Swietenia macrophylla King and Dipterocarp 
species in Mindanao, and  Leucaena leucocephala de Wit from Laguna, Antique, 
Cebu, Iloilo, Rizal, and Ilocos Sur. Non-linear regression was used to derive species-
specific, site-specific and generic equations between yield and diameter of the form y 
= αDβ. Equations were evaluated based on the correlation coefficient, standard error 
of estimate and residual plots. Regressions resulted in high r values (>0.90). In some 
cases, non-homogeneous variance was encountered. The generic equation improved 
estimates compared with models used in previous studies. 
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INTRODUCTION 
 

Climate change is of major community concern, the most recent Intergovernmental 
Panel on Climate Change (IPCC) assessment report stating with very high confidence 
that anthropogenic activities since 1750 have lead to a net global warming (IPCC, 
2007). The rise in global temperatures has been attributed to emission of greenhouse 
gases, notably carbon dioxide (Schimel et al. 1995). Forest ecosystems can be sources 
and sinks of carbon (Watson et al., 2000). Deforestation and change in land use result 
in a high level of emissions of CO2 and other greenhouse gases. CO2 emissions 
associated with land-use change were about 1.6 Gt per year over the 1990s (IPCC 
2007). Land-use and forestry also have the potential to mitigate carbon emissions 
through the conservation of existing carbon reservoirs (i.e. by preventing deforestation 
and forest degradation), improvement of carbon storage in vegetation and soils and 
wood products, and substitution of biomass for fossil fuels for energy production 
(Brown et al. 1993). Estimation of the magnitude of these sinks and sources of carbon 
requires reliable estimates of the biomass of forests and of individual trees. 

Direct measurement of tree biomass involves felling an appropriate number of 
trees and estimating their field and oven-dry weights, a procedure that can be costly 
and impractical, especially when dealing with numerous species and large sampling 
areas. Rather than performing destructive sampling all the time in the field, an 
alternative method is to use regression equations (developed from a previously felled 
sample of trees) that predict biomass given some easily measurable predictor variable, 
such as tree diameter or total height. Such equations have been developed for many 
species (Parde 1980), including fast-growing tropical species (Lim 1988; Fownes and 
Harrington 1991; Dudley and Fownes 1992; Stewart et al. 1992). 

Biomass is typically predicted using either a linear (in the parameter to be 
estimated) or non-linear regression model, of the following forms: 

  
Linear:  Y = βX + ε    (Equation 1) 
Nonlinear: Y = Xβ + ε    (Equation 2) 
 
where  Y = observed tree biomass 
  X = predictor variable (e.g. diameter, height) 
  β = model parameter 
  ε  = error term 

 
The nonlinear model can be subdivided into two types: ‘intrinsically linear’ and 

‘intrinsically non-linear’. A model that is intrinsically linear can be expressed by 
transformation of the variables into standard linear form. If a non-linear model cannot 
be expressed in this form, then it is intrinsically non-linear. An example of an 
intrinsically linear model is the power function:  
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   y = αDβε  (Equation 3) 
 

where  y = tree biomass (or total height)  
  D = diameter at 1.30 m (dbh) 
  α, β = model parameters 

ε = error term 
 
Taking the natural logarithms of both sides of the equation yields the linear form: 

 
  ln y = ln α + β ln D + ln ε   (Equation 4) 
 

In this form, the regression model can be fitted to biomass (or height) data using 
standard least squares linear regression. In earlier attempts to develop biomass 
equations for trees, logarithmic transformation was traditionally employed as a means 
of linearising non-linear relationships, mainly because of the difficulty of estimating 
non-linear relationships without the aid of high-speed computers (Payandeh 1981). 
However, there are disadvantages in using logarithmic transformations, including the 
assumption of a multiplicative error term in the model (Baskerville 1972) and 
difficulties in evaluating usual measures of fit such as R2 and the standard error of 
estimate (SEE) in terms of the original data. In the case of biomass equations, non-
linear models usually produce a better fit than both the logarithmic and multiple linear 
regression models (Payandeh, 1981).  

Many applications of mathematical models for biomass reveal the superiority of 
the power function (Equation 3 above), notably for estimation of the biomass of stems 
and roots of trees (Parde 1980; Fownes and Harrington 1991; Ketterings et al. 2000). 
This model also expresses the long-recognised allometry between stem biomass and 
girth (Parde 1980).  

A generic equation for predicting individual aboveground tree biomass using dbh 
as predictor variable was developed by Brown (1997) based on data on 170 trees of 
many species harvested from the moist forest zone of three tropical regions. This 
equation has been used in previous studies to determine indirectly the biomass and 
carbon storage of forest ecosystems in the Philippines (Lasco et al. 2002a and b; 
Lasco et al. 2004) because of the scarcity of local species- or site-specific biomass 
equations. However, generic equations applied to local data tend to overestimate the 
actual biomass of trees (Ketterings et al. 2000; Van Noordwijk et al. 2002; Macandog 
and Delgado 2002), which highlights the need to develop species-specific and site-
specific equations that produce estimates more closely reflecting the characteristics of 
species and conditions in the Philippines.     
 
RESEARCH METHOD 
 

For this study, no destructive sampling of trees was done; instead data from two 
studies involving destructive sampling for biomass determination of trees conducted in 
several localities in the Philippines by Kawahara et al. (1981) and Tandug (1986) were 
re-analysed. A general description of the study sites from these sources is provided in 
Table 1.  
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The data sets consisted of individual tree measurements for dbh, total height and 
total aboveground biomass of tropical tree species, the majority of which are fast-
growing plantation species and were sampled from young stands (mostly less than 10 
years old) (Tables 2 and 3). Tandug (1986) developed biomass regression equations 
with dbh and height as predictor variables. Nevertheless, her data set was analysed in 
order to develop simpler equations (i.e. those with fewer parameters and which would 
not require prior transformation of data).  

 
Table 1. Description of sampling sites from which data were sourced 
 
Locality Climate 

type 
Species Forest type Age (yr) Stand  

density 
(stems/ha) 

Source 

Aras-asan, 
Mindanao IV 

Paraserianthes 
falcataria(L.) 
Nielsen 

Plantation 
(timber) 

4.9,  
8.3 

1085, 
315 

Kawahara 
et al. 1981 

  Swietenia 
macrophylla King 

Plantation 
(timber) 15.3 1147  

  Gmelina arborea 
Roxb. 

Plantation 
(timber) 9.3 1191  

  Dipterocarpaceae Natural  
forest Unknown 1144  

Laguna   I Leucaena 
leucocephala de Wit Plantation 9 459 Tandug 

1986 
Antique III L. leucocephala Plantation 4 10742  

Cebu III L. leucocephala Plantation 10 1500  

Ilocos Sur   I L. leucocephala Plantation 7 8140  

Iloilo IV L. leucocephala Plantation 5 648  

Rizal   I L. leucocephala Plantation 2-4 8926  
   
Preliminary screening was carried out for each data set, by producing scatter plots 

of raw (i.e. untransformed) data and log-transformed values of biomass vs dbh 
(Figures 1 to 4). Plots of log-transformed biomass vs dbh are expected to assume the 
shape of a straight line, based on the allometric relationship. 
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Table 2. Summary data of trees sampled by Kawahara et al. (1981) 
 

Species  Number 
of trees 

Dbh  
(cm) 

Total height  
(m) 

Total above-
ground biomass 

(kg/tree) 

Paraserianthes falcataria (5-yr old) 7 5.4 - 20.5 9.3 - 18.3 3 - 105 

Paraserianthes falcataria (8-yr old) 13 4.1 - 36.1 4.3 - 33.6 3 - 533 

Gmelina arborea  7 8.0 - 31.4 7.3 - 25.0 9 - 306 

Swietenia macrophylla 5 6.7 - 26.0 5.6 - 18.9 7 - 315 

Dipterocarpaceae 7 7.3 - 34.0 7.9 - 26.9 7 - 473 
 
 
Table 3. Summary data of L. leucocephala trees sampled by Tandug (1986) 
 
Locality or province  Number of 

trees 
Dbh 
(cm) 

Total height  
(m) 

Total aboveground 
biomass (kg/tree) 

Laguna 18 5.4 – 21.0  5.7 - 10.5 5 - 151 

Antique 13 4.5 - 14.1  9.0 - 12.7 7 - 73 

Cebu 21  10.0 - 31.8 12.3 - 19.0 36 - 535 

Ilocos Sur 18 5.2 - 20.8 10.1 - 21.0 11 - 287 

Iloilo 14 5.1 - 13.8   8.3 - 10.3 9 - 76 

Rizal 27 4.0 -16.2 5 .5 - 16.1 3 - 101 
 
After this initial screening, non-linear regression analysis of the data was 

performed with CurveExpert v.1.3 (Hyams 1997) software using the Levenberg-
Marquardt algorithm. Practical experience in the field has shown the difficulty of 
obtaining accurate measurements of the height of standing trees, especially in natural 
forest stands. Bearing this in mind, priority has been given to a model with only 
diameter as predictor variable (Equation 3). Estimates of the parameters α and β have 
been derived for each species and each site in the data sets. Pooled biomass data were 
also analysed to obtain generic equations with potential wider applicability. In the 
analysis, the effect of species and site differences on biomass was not considered. 
Species-specific, site-specific as well as generic equations have been evaluated based 
on the correlation coefficient (r), standard error of the estimate (SEE) and residual 
plots. 
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RESULTS AND DISCUSSION 
 
For both data sets, scatter plots of log-transformed value of biomass versus dbh 

for each species and site (Figures 1 and 2) indicate a good fit to the hypothesised 
functional relationship. 
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Figure 1. Scatter plots of log-transformed biomass vs dbh from Kawahara et al. (1981) 



Biomass Equations for Tropical Tree Plantation Species  
 

79 

R2 = 0.968

0

2

4

6

0 1 2 3
ln(dbh)

ln
(b

io
m

as
s)

4

 

R2 = 0.9732

0

2

4

6

0 1 2 3
ln(dbh)

ln
(b

io
m

as
s)

 
a. ln(biomass) vs ln(dbh): L. leucocephala - 

Laguna 
b. ln(biomass) vs. ln(dbh): L leucocephala 

- Antique 

R2 = 0.9558

0

2

4

6

8

0 1 2 3 4

ln(dbh)

ln
(b

io
m

as
s)

 

R2 = 0.9625

0

2

4

6

8

0 1 2 3
ln(dbh)

ln
(b

io
m

as
s)

4

 

c. ln(biomass) vs ln(dbh): L. leucocephala - 
Cebu 

d. ln(biomass) vs ln(dbh): L. leucocephala - 
Ilocos Sur 

 
Figure 2. Scatter plots of log-transformed- biomass vs dbh from Tandug (1986) 
 
 
 
 
 
 
 
 
 
 
 



BANATICLA, SALES and LASCO 

 

 

80 

R2 = 0.9326

0

2

4

6

0 1 2 3
ln(dbh)

ln
(b

io
m

as
s)

 

R2 = 0.98

0

2

4

6

0 1 2 3
ln(dbh)

ln
(b

io
m

as
s)

 

e. ln(biomass) vs ln(dbh): L. leucocephala - 
Iloilo 

f. ln(biomass) vs ln(dbh): L. leucocephala - 
Rizal 

R2 = 0.9563

0

2

4

6

8

0 1 2 3 4
ln(dbh)

ln
(b

io
m

as
s)

 

 

g. ln(biomass) vs ln(dbh): all sites  
 
Figure 2. (Cont.) Scatter plots of log-transformed- biomass vs dbh from Tandug 
(1986) 
 

Estimates for the parameters of the power function fitted to individual species and 
sites and the pooled biomass data are reported in Table 4, and graphs of the observed vs. 
fitted values are presented in Figures 3 to 6. All analyses resulted in high r values 
(>0.90), although the SEE are highly variable. Figures 3 and 4 show the good fit of the 
generated power functions for each species-site combination. Figure 4 in particular 
indicates that in the absence of height data for L. leucocephala, the new equations can 
adequately approximate the observed biomass values with diameter at breast height as 
sole predictor variable. The regressions for pooled sites for L. leucocephala (Figure 5) 
and pooled species and sites – i.e. the Tandug’s and Kawahara et al. data combined 
(Figure 6) – indicate a good fit to the lower range of the data, but greater uncertainty in 
predicting biomass with greater diameters (> 20 cm). Despite this, as seen in Figure 7, 
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the use of the power function y = 0.342D2.073, improved estimates compared with 
applying the generic equation by Brown (1997) used in previous studies. 

Examination of residual plots (Figures 8 to 10) revealed that in some cases (L. 
leucocephala in Laguna and Ilocos Sur, and the generic equations), non-homogeneous 
error variance was present, i.e. the variance increases as dbh increases. Future work 
should address this problem to improve the predictive ability of the equations. One 
remedy discussed in Ballard et al. (1998) is the application of a weighting scheme for 
the non-linear fitting. 

 
Table 4. Summary of regression parameter estimates and statistics for biomass 
equations for five species using the model y = αDβ  
 
Species n Min D Max D α β SEE R 
Paraserianthes 
falcataria  20 4.1 36.1 0.049 2.591 19.766 0.991 

Gmelina arborea    7 8.0 31.4 0.153 2.217 13.831 0.994 
Swietenia 
macrophylla   5 6.7 26.0 0.022 2.920 17.616 0.993 

Dipterocarpaceae   7 7.3 34.0 0.031 2.717 24.374 0.992 
Leucaena 
leucocephala        

Laguna 18 5.4 21.0 0.132 2.316 11.424 0.972 
Antique 13 4.5 14.0 0.477 1.937 5.412 0.975 
Cebu 21 10 31.8 0.753 1.921 32.151 0.981 
Ilocos Sur 18 5.2 20.8 0.112 2.580 14.860 0.982 
Iloilo 14 5.1 13.8 0.225 2.247 5.710 0.967 
Rizal 25 4.0 16.2 0.182 2.296 4.149 0.992 
All sites 
combined 111 4.0 31.8 0.206 2.305 26.468 0.973 

All species/ 
sites 148 4.0 36.1 0.342 2.073 41.964 0.938 
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Figure 3. Observed vs fitted biomass values for trees sampled by Kawahara et al. 
(1981). 
 
‘Power Fit’ refers to allometric equation specific for each species.  
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c. L. leucocephala - Cebu d. L. leucocephala - Ilocos Sur 
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Figure 4. Observed- vs predicted biomass values of trees sampled by Tandug (1986)  
 
‘Power Fit’ refers to allometric equation specific to a site and ‘Tandug’ refers to biomass 
equations by Tandug with dbh and height as predictors (Y= aDb1Hb2). 
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Figure 5. Observed vs predicted biomass values of trees sampled by Tandug (1986) 
 
Individual biomass of trees from the Tandug data set are estimated using the power 
function y = 0.206D2.305 fitted to the pooled L. leucocephala data (‘Power Fit Leucaena’), 
and the generic equation y = 0.342D2.073 fitted to the pooled Tandug-Kawahara et al. data 
(‘Power Fit-Gen’). 
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Figure 6. Observed vs predicted biomass values of the pooled Tandug-Kawahara et al. 
data ( ‘Power Fit-Gen’ refers to the generic equation y = 0.342D2.073) 
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Figure 7. Observed vs predicted biomass values of all trees from the data sets using 
the generic equation y = 0.342D2.073 (‘Power Fit-Gen’), and Brown's (1997) equation y 
= exp(-2.134 + 2.530 ln(D)) 
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Figure 8. Residuals from the regressions for species-specific equations from Kawahara 
et al. (1981) data 
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c. L. leucocephala - Cebu d. L. leucocephala - Ilocos Sur 
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Figure 9. Residuals from the regressions for site-specific equations for L. 
leucocephala from Tandug’s (1986) data 
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Figure 10. Residuals from the regressions for generic equations from the pooled 
Kawahara et al. (1981) and Tandug (1986) data 
 
SUMMARY AND CONCLUSIONS 

 
Allometric equations for predicting tree biomass were developed using secondary 

data from Philippine studies involving destructive sampling. Biomass data were taken 
from studies conducted independently by Kawahara et al. (1981) for timber 
plantations of Gmelina arborea, Paraserianthes falcataria, Swietenia macrophylla 
and Dipterocarp species in Mindanao and by Tandug (1986) for Leucaena 
leucocephala plantations (mainly for dendrothermal power plants) from Laguna, 
Antique, Cebu, Iloilo, Rizal, and Ilocos Sur. Non-linear estimation was used to fit the 
data to the power function Y = αDβ , with Y = total above-ground biomass of tree, D 
= diameter at breast height, and α,β = parameters. 

Regression equations based solely on diameter appear to estimate adequately 
tree biomass, with a correlation coefficient of more than 0.90, although the 
inclusion of height as predictor variable was not explored. A problem encountered 
with the regressions is that, in some cases tested, errors in prediction increase with 
increasing diameter (non-homogeneous variance).   

It is emphasised that the biomass regression equations reported here are 
deterministic in nature, i.e. parameter estimates are single fixed numbers at any given 
time and applying them on trees under different growing conditions and to age and 
diameters outside the range of the measurements of the sampled trees is not advised. 

Future efforts in equation development should consider including large trees 
whenever possible, because the analysis reported here shows greater variability in tree 
biomass among groups at larger diameters (≥ 30 cm dbh). The variability in biomass 
of the various species-sites in the pooled data precludes the development of a 
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generalised biomass equation of potential wider applicability. It is still recommended 
that species- and site-specific equations be used whenever possible. 
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