Soils Derived from Ophiolitic Rocks in Northeastern Leyte: Morphological, Physical, and Chemical Properties

Cecille Marie O. Quiñones and Victor B. Asio

Department of Soil Science, Visayas State University, Visca, Baybay City, Leyte 6521-A, Philppines

ABSTRACT

Soils that developed from ophiolitic rocks in Leyte, Philippines are relatively unknown. Seven soil profiles were studied at various slope positions in Basper watershed underlain by ophiolitic rock to evaluate the soil morphological, physical-hydrological, and chemical properties. Results show that the soils range from poorly to moderately developed and from shallow to deep soils. The soil profile development appears to be related to the slope positions. Those on the footslope and summit positions had thinner solum while those in the lower backslope developed into deep soils. In addition, the soils are generally clay loam to sandy clay loam in the upper horizon. They tend to be sandy in the lower section of the profile due to the saprolite coming from the ophiolitic parent rock. Physical-hydrological properties such as bulk density values increase with depth which is accompanied by a decrease in total porosity while saturated hydraulic conductivity of surface soils are higher than that in the subsurface soils. In terms of chemical properties, soil pH values vary from 5.9 to 7.10 indicating near neutral soil reaction. Available P, soil organic carbon, total N, as well as the exhangeable K and Na are generally low. Effective CEC measures of the soils range from 10.61 to 25.81 cmol_e kg⁴.

Keywords: Ophiolite, Ultramafic Soils, Soil formation, Soil Characteristics

INTRODUCTION

Ophiolites are pieces of oceanic lithospheric plates that have been thrusted onto the edge of continental plates. They are a distinctive assemblage of mafic to ultramafic rocks (Dilek, 2003). In a completely developed ophiolite, the rock types occur in the following sequence from bottom to top: ultramafic complex, gabbro complex, mafic sheeted dike complex, mafic volcanic complex, and associated rock types (e.g. cherts, shale, limestone) (Dilek, 2003; Huang, 1962). According to Dimalanta *et al.*, (2006) ophiolites occur in several locations in Central Philippines such as Antique, Bohol, Cebu, Leyte, and Samar. The Tacloban Ophiolite Complex in Northeastern Leyte is composed of harzburgite (an ultrabasic rock dominated by olivine and pyroxene), gabbro, sheeted diabase, basalt dike complex, and pillowed and massive basaltic flows. It originated during the Early Cretaceous period with an age of 145.1 ±3.2 Ma (Dimalanta *et al.*, 2006). Due to the heterogeneity of the rock materials within the ophiolite complex, different soils can develop from these materials.

Baillie et al., (2000), in their study in Palawan, observed that although the ophiolitic crystalline rocks are lithologically heterogeneous, the soils derived from these materials had similar morphologies but considerably different chemical characteristics. D'Amico (2009) noted that among the ophiolitic soils, those that developed from ultramafic rocks have long attracted the interest of soil scientists and ecologists because of their unique vegetation and chemical characteristics particularly their high nickel content.

Primarily due to their mineralogical composition which is characterized by high olivine (Mg, Fe)SiO content, ultramafic rocks are easily weathered especially under the humid tropical environment which in turn affects the rate of soil development (Wyllie, 1969). Moreover, the geochemical composition of these rocks may also influence the properties of the soils derived from them. Until at present, only a few studies have been conducted on the soil chemistry and fertility of ultramafic soils in the Philippines and these were mostly done in Palawan and Sibuyan Islands (Proctor, 2003). The objective of the study was to evaluate the morphological, physical, and chemical properties of soils derived from ophiolitic rocks in Tacloban, Northeastern Leyte.

MATERIALS AND METHODS

A. Study site

The study site is located in Basper, Tacloban City, Northeastern Leyte, Philippines. Based on the FAO Guidelines for Soil Description (Jahn et al., 2006), the area can be described as a medium gradient hill. Its vegetation cover is dominated by *Imperata cylindrica* (cogon grass) at its upper slope; a grass-shrub transition at the middle slope; and largely shrubs with some planted *Acacia mangium* trees at the lower slope. This was the study site of the ACIAR Hydrology Project led by Prof. Dr. L.A. Bruijnzeel who came from the Free University, Amsterdam, The Netherlands.

The dominance of cogon grass indicates that the watershed is degraded. This grass persists as a response to periodic burning which was last practiced years before the conduct of this study. This practice and other farming activities were mainly done at the lower slopes of the landscape. In terms of geology, the area belongs to the Tacloban Ophiolite Complex (Dimalanta et al., 2006) (Fig.1). The warmest month is experienced in April with an average temperature of 28.1°C while pronounced wetness occurs in the months of November, December, and January with rainfall of 279.0 mm, 305.3 mm, and 281.17 mm, respectively. The soil moisture regime based on climatic data is udic which implies that soil moisture is available year round while the soil temperature regime is isohyperthermic implying that the annual average temperature is above 22 °C and it does not fluctuate above 5 °C (Soil Survey Staff, 1996). Although there was slight erosion and acceptable drainage from where each profile was located, the steep areas especially those close to soil profiles 3, 4, and 6 experienced periodic landslides particularly during heavy rainfall events consequently eroding the topsoil and subsoil. As constantly observed, minor landslides were common that have further exposed some of the partly weathered parent rocks.

B. Field Soil Description and Sampling

Field soil description and sampling were mostly done from September to December 2013. We selected seven soil profiles along the east-facing slope of the ophiolite hill, with at least one soil profile representing the following slope positions: summit, shoulder, upper and lower backslope, and footslope (Fig. 1; Table 1). To examine and sample the profiles, a soil pit with a surface area of 1x1 m and having a depth of at least 1 m was dug manually. Soil profile description followed the international standard FAO Guidelines for Soil Description (Jahn *et al.*, 2006). About one-half kilogram of composite soil sample was obtained from three subsamples collected from every horizon of each soil profile

38

(Schlichting et al., 1995). Samples were air-dried, ground using a wooden hammer, sieved to pass a 2-mm and 0.425-mm wire mesh, and stored in properly labeled plastic bags.

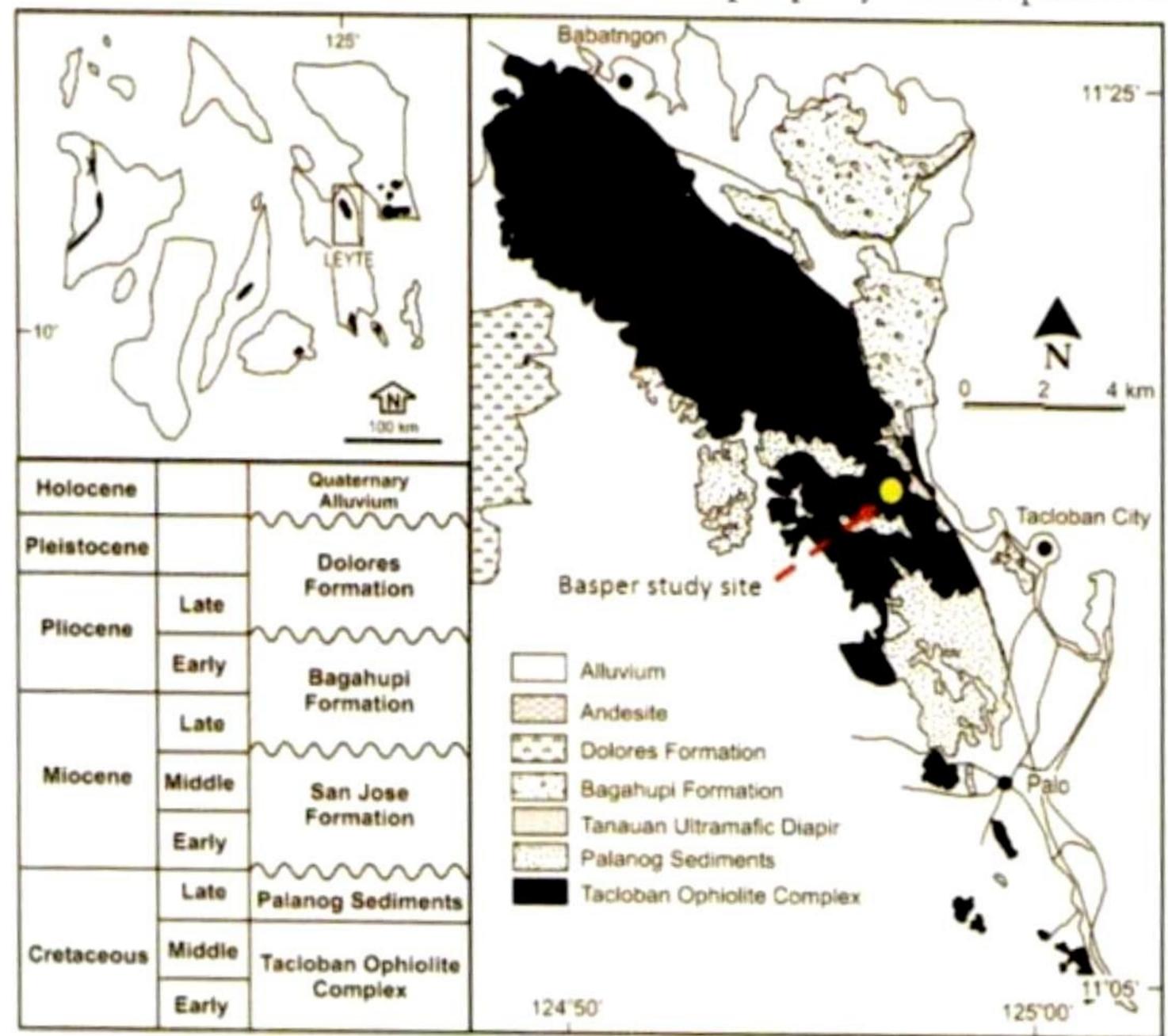


Figure 1. Geologic map showing the age formation of the Tacloban Ophiolite Complex in Northeastern, Leyte (Dimalanta et al., 2006). The Basper study site is indicated by yellow circle.

C. Laboratory Analysis

Particle size distribution was analyzed by the Pipette method (Schlichting et al., 1995) after pre-treatment of the soil samples with sodium hypochlorite (NaOCl) to remove organic matter and mechanical dispersion followed by using a Hielscher ultrasonic sonicator. Bulk density was determined by taking three soil cores from each horizon. The same soil cores were used for the total porosity determination according to the method of Schlichting et al., (1995) and the hydraulic conductivity (Ksat) by the Amoozemeter (Amoozegar, 1989). The Amoozemeter (also called Compact Constant Head Permeameter) is a permeameter that can help field scientists run measurements of saturated hydraulic conductivity (Ksat) of soils and fill material at sites that previously proved to be a challenge to measure. It is composed of a set of four constant-head tubes, a 5-liter water reservoir, a flow-measuring reservoir, a water-dissipating unit, and a base housing a three-way valve that connects the two reservoirs and the water-dissipating unit together. The Amoozemeter uses the constant head tubes to keep a constant head in the bore hole and then the water drop from the reservoirs is measured over time. Apart from the field measurements, core samples were collected from each soil profile to determine the Ksat in the laboratory with the use of a Permeameter (Eijkelkamp, 2013).

For the chemical properties, soil pH was determined potentiometrically using distilled water and 0.01 mol/L CaCl₂ at a soil-solution ratio of 1:2.5 (ISRIC, 1995); soil organic Carbon (C) by the modified Walkley-Black method (Nelson and Sommers, 1982); total Nitrogen (N) by the micro-Kjeldahl method (ISRIC, 1995); available Phosphorus (P) by the Bray No. 2 method (USDA-NRCS, 1996). Exchangeable Potassium (K), Calcium (Ca), Magnesium (Mg), Sodium (Na) were extracted using 1 N Ammonium acetate (NH₄OA₂) adjusted to pH 7.0 according to the Metson method (Metson, 1956) as described in ISRIC (1995) and quantified by atomic absorption spectrophotometry (Varian Spectra 220 FS). Exchangeable acidity Aluminum and Hydrogen (Al and H) was extracted using 1N Potassium chloride KCl (Thomas, 1982) and followed by titration. Effective Cation

Site characteristics of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte.

				Soil Profile			
Site Characteristics	1	2	3	4	.23	9	7
Location			Basper watersh	Basper watershed, Tacloban, Northeastern Leyte	astern Leyte		
Coordinates	N 11° 15' 25.9" E 124° 57' 23.6"	N 11° 15' 25.4" E 124° 57' 23.4"	N 11° 15' 25.5" E 124° 57' 20.8"	N 11° 15' 26.6" E 124° 57' 18.9"	N 11° 15' 30.5" E 124° 57' 19.1"	N 11° 15' 29.6" E 124° 57' 21.9"	N 11° 15' 26.6" E 124° 57' 23.6"
Elevation	64 m asl	71 m asl	91 m asl	118 m asl	141 m asl	122 m asl	76 m asl
Landform			Mediun	Medium-gradient mountain -			
Slope position	Foot slope	Lower backslope	Upper backslope	Shoulder	Summit	Upper backslope	Lower backslope
Slope gradient	W	Moderately steep		Sloping	Slightly sloping	Moderately steep	steep
Parent material				Ultramafic rock / Mafic			
Soil moisture regime			Udic				
Soil temperature			Isohype	Isohyperthermic			
Erosion	Slight	Slight	Slight	Slight	Slight	Slight	Slight
Rock outcrops	Common	Common	None	None	None	None	None
Drainage	Weakly drained	Well drained	Well drained	Well drained	Well drained	Well drained	Moderately
Land use	Grassland fallow	Grassland fallow	Grassland fallow	Grassland fallow	Grassland fallow	Grassland fallow	Grassland fallow
Vegetation	Grasses, shrubs, ferns	Grasses, shrubs, broad leaves, ferns	Grasses, shrubs, Herbs, ferns, sedges	Grasses	Grasses, Coconut trees	Grasses, shrubs	Grasses, shrubs, A. mangium

Exchange Capacity (Eff. CEC) was calculated by simply adding the values of exchangeable K, Na, Ca, and Mg along with exchangeable acidity (Al and H). The levels of nutrients were described according to the criteria by Landon (1991).

RESULTS AND DISCUSSION

Soil Morphological Properties

Table 2 presents the horizons, color, texture, structure, consistency, presence of roots and rock fragments of the soil profiles investigated. The soils have horizonation varying from Ap-C-R in the footslope position to Ap-Bw-BC-C in the upper backslope, shoulder and summit positions, to Ap-Bt-BC-C in the lower backslope. The A horizons of the soils range in thickness from 12 cm in the shoulder position to 25 cm in the footslope position suggesting the influence of soil erosion on the top soil thickness. Except the soil on the shoulder position which has a hue (dominant spectral color) of 2.5Y (yellow), all the other soils have a hue of 10YR (yellow-red). In terms of soil texture, most of the soil profiles are clay loam on the surface to sandy clay loam in the subsurface. A clearly different soil texture can be observed in the footslope soil which is sandy clay loam on the surface to loamy sand in the subsurface. Most of the soils have subangular blocky structure and leave firm moist consistence. Because of the grass vegetation, most top soils have common fine roots. The presence of many fine roots is restricted to the first three horizons from the surface, this may suggest that the access of nutrients and water is limited to these horizons.

The above-mentioned horizon sequence and texture of the footslope soil confirm its poor development. In contrast, the good development of the lower backslope soil is shown by the horizonation and the soil texture. This is unexpected since the soil is located on erosional surface where run-off is a common occurrence during and after heavy rainfall events. On the other hand, the relatively poor development of the summit soil suggests that the surface was affected by past soil erosion.

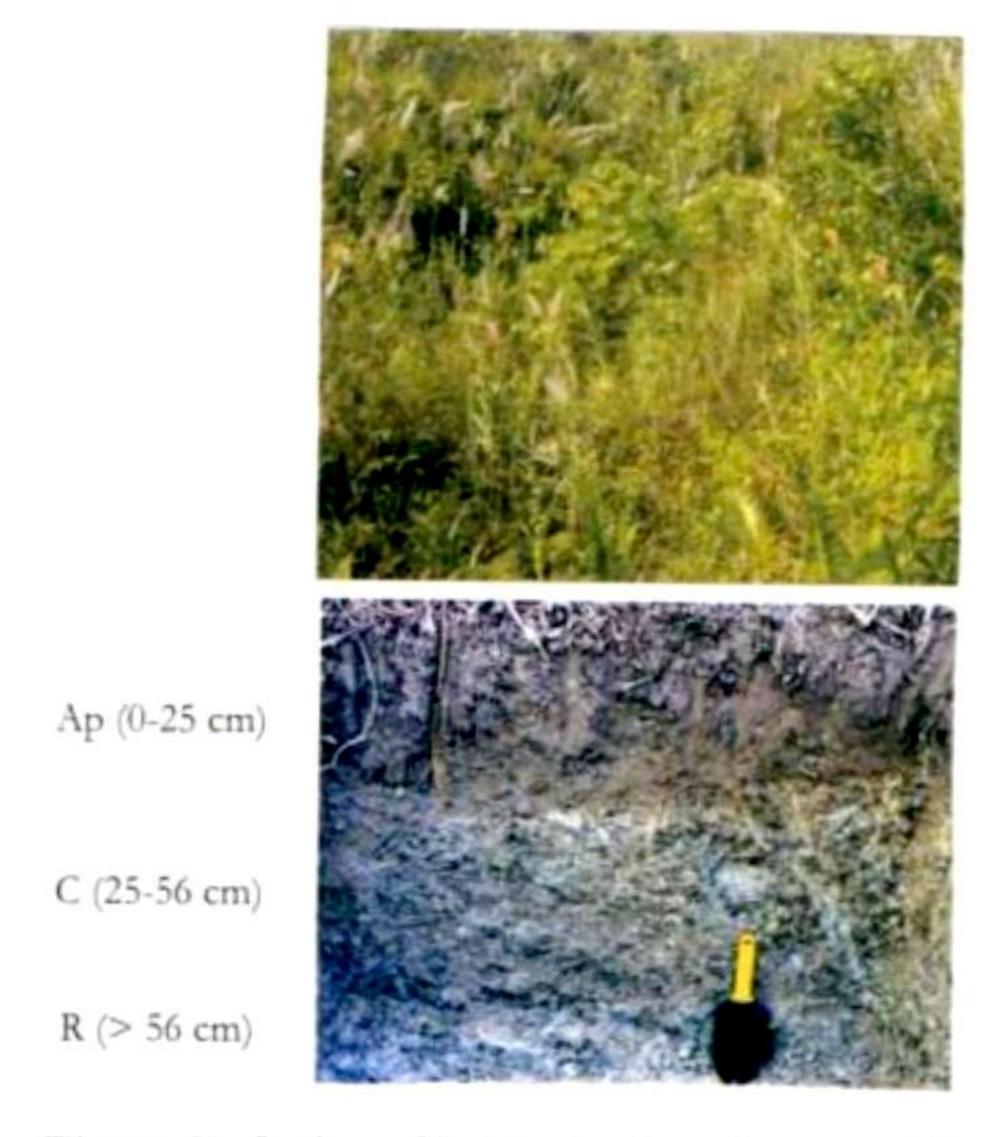


Figure 2a. Soil profile 1 in the footslope position showing a thin solum overlying the greenish colored ophiolitic rock.

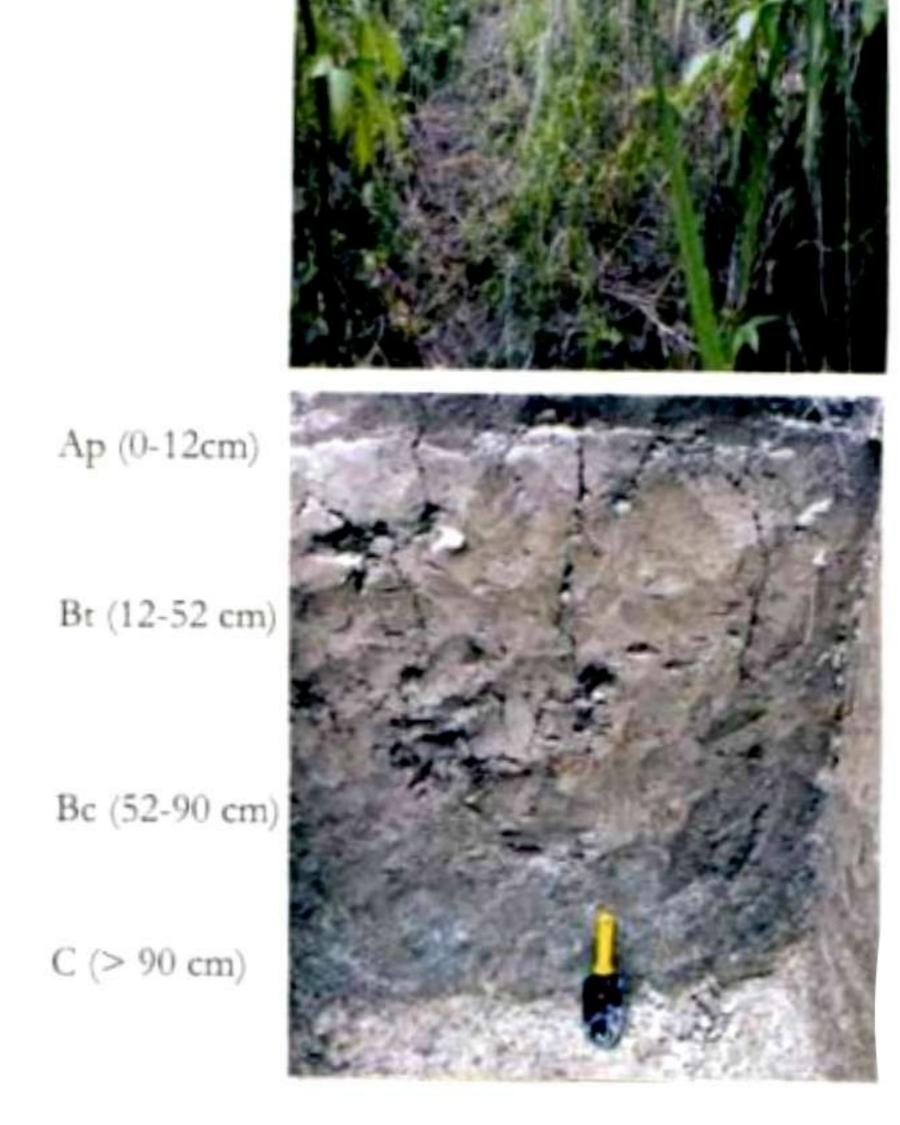


Figure 2b. The moderately deep soil profile 2 showing a massive and clayey solum.

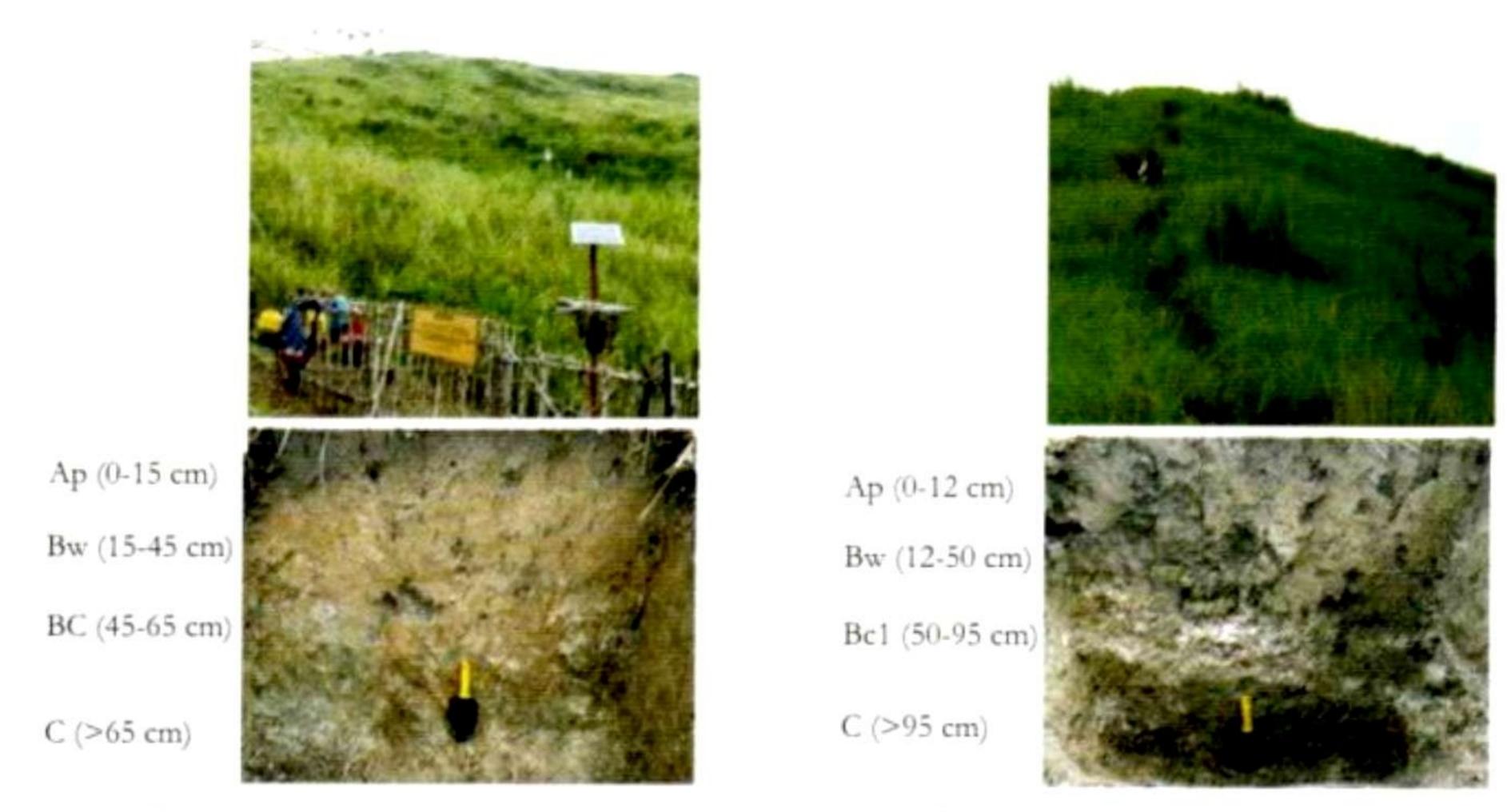


Figure 2c. The moderately deep soil profile 3 in the upper backslope position.

Figure 2d. Soil profile 4 located on the shoulder position.

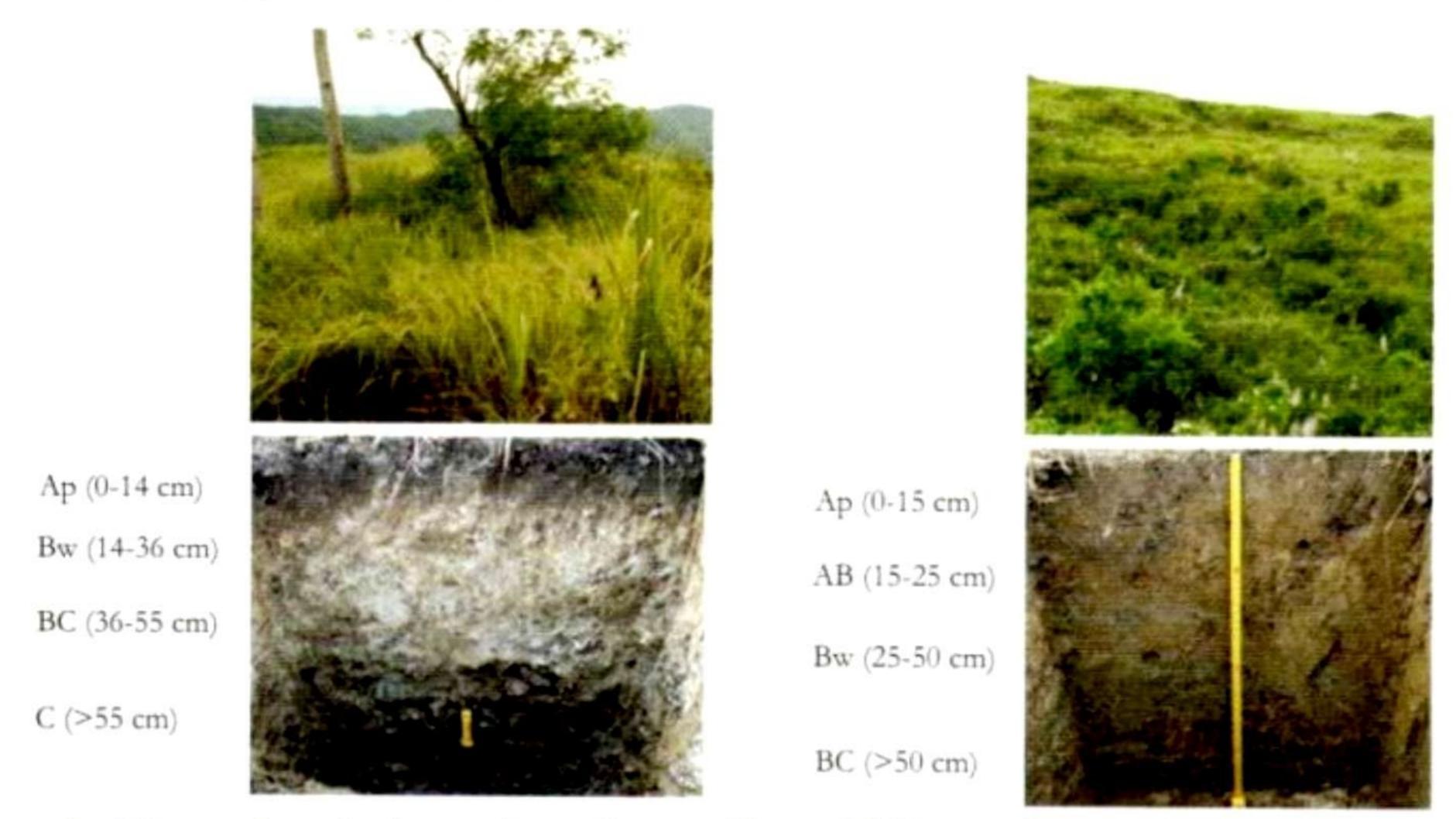


Figure 2e. The moderately deep soil profile 5 in the summit position.

Figure 2f. The moderately developed soil profile 6 in the upper backslope position.

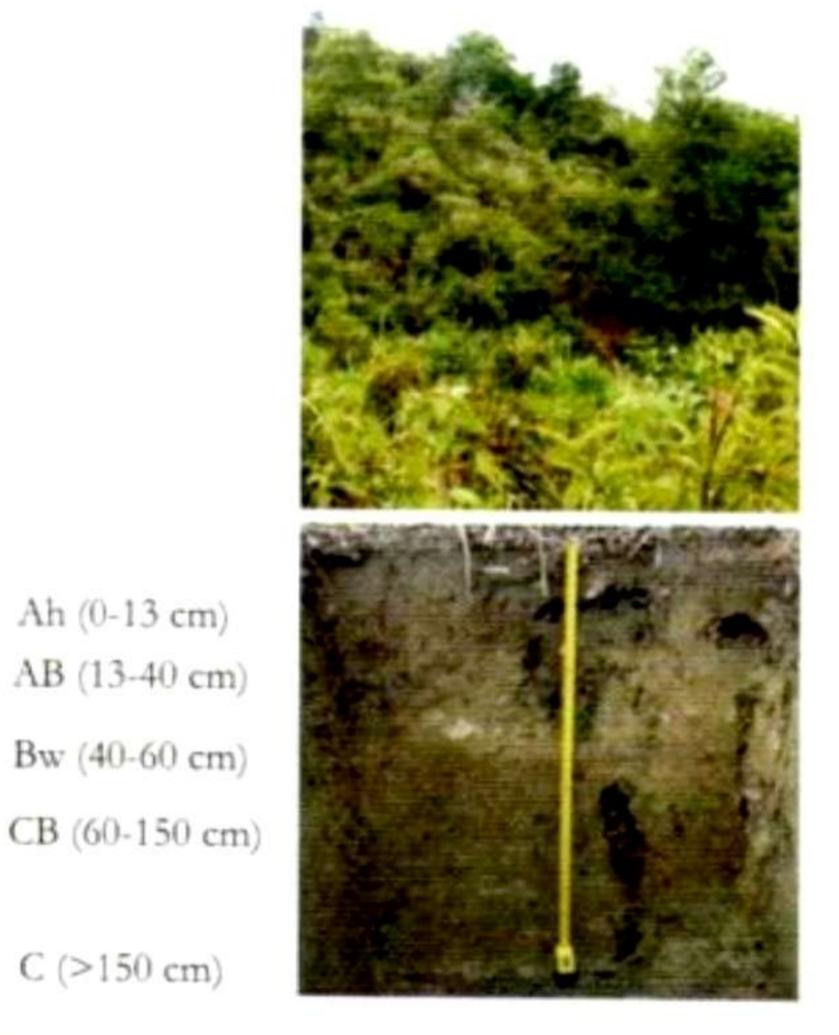


Figure 2g. The deep soil profile 7 in the lower backslope position under shrub and A. mangium vegetation cover.

ophiolitic rock in Basper, Tacloban, Northeastern Leyte. Morphological characteristics of soils developed from

Soil	Soil	Horizon	Soil Color (Mineell notation)	Texture	Structure	Cons	Consistence	Roots	Boundary	Rock fragments
Profile	Dep	th (cm)	Tacimata)	a market		Moist	Wet			0
_	1 Ap 0 -		2/2	SCL	Imsbk	ij	st & pl	cvf, cf, cm	CS	п
	\circ	25 - 56	10YR 5/1 (gray)					vtvt	CS	C
	×	> 56	10YR 6/2 (olive gray)					п		C
2	Ap	0 - 12	10YR 3/2 (brown black)	SiC	1csbk	ij	st & pl	cf, fm, fc	CS	u
	Bt	12 - 52	10YR 6/2 (light brownish gray)	C	2csbk	ч	st & pl	cf, fm, fc	CW	п
	BC	52 - 90	2.5YR 5/4 (yellowish brown)	SC	1csbk	vfi	sst & spl	ff, fm	wg	
	C	90 - 100	10YR 6/2 (olive gray)	SC	1csbk	Э	sst & spl	u		
	C_2	100 - 120		SC		Э				
	C3	120 - 140	10YR 5/2 (grayish brown)	CL		fr-fi				
	C	140 - 160	10YR 4/4 (dark yellowish	SiL		ij				
			brown)							
3	Αр	0-15	10YR 3/1 (very dark gray)	SiC	1csbk	ч	sst & spl	cvf, cf, fm	CW	u
	Bw	15 - 45	10YR 5/2 (grayish brown)	SC	1csbk	vfi	st & pl	fvf	wg	п
	BC	45 - 65	10YR 6/1 (gray)	SC	1csbk	ч	st & pl	vff	ws	u
	Cl	06 - 59	5Y 6/4 (olive yellow)	SC	1msbk	ij	st & pl	п		
	C2	90 - 110	10YR 6/2 (light brownish gray)	CL		ij	sst & spl			
3	C_3	110 - 130	10YR 7/3 (very pale brown)	C		vfi	vst & vpl			
3	C4	130 - 150	10YR 6/3 (pale brown)	SiC		vfi	st & pl			
4	Ap	0 - 12	2.5Y 3/1 (brownish black)	SiC	1csbk	ij	sst & spl	cvf, cf, cm	Sew	п
	Bw	12 - 50	2.5Y 5/3 (yellowish brown)	C	2csbk	υĐΛ	st & pl	ff	CS	u
	BC1	90 - 20	2.5Y 5/3 (yellowish brown)	SC	1msbk	ij	sst & spl	۸ŧ	CW	u
	BC2	70 - 95	2.5Y 5/3 (yellowish brown)	SC	1msbk	Ĥ	sst & spl	С		

Table 2. Continuation.

ght brownish gray) SC fi st & pl ght brownish gray) SiCL fi sst & spl ght brownish gray) SiCL fi sst & spl ark gray) SiC Imsbk fi sst & spl rownish black) SiC Imsbk fi st & pl cvf, cf, cm cs ark yellowish brown) SiC Imsbk fi st & pl vff cw cllowish brown) SiC Imsbk fi st & pl n cs dark brown) SiC Imsbk fi st & pl nf cw dark brown) SiC Imsbk vfi st & pl nf cw dark brown) SiC Imsbk vfi st & pl nf cw dark brown) SiC Imsbk vfi st & pl nf cw dark yellowish brown) SiC Imsbk vfi st & pl nf cw black) C Ifsbk <	Soil	Soil I	Horizon	Soil Color (Mineell notation)	Texture	Structure	Con	Consistence	Roots	Boundary	Rock fragments
95-115 10YR 4/6 (light brownish gray) SC fi st & pl 15-135 10YR 7/3 (very pale brown) 1.5 fi sst & spl 15-135 10YR 8/4 (dark gray) SC finshk fi sst & spl 35-155 10YR 4/1 (dark gray) SC lmsbk fi sst & spl cvf, ff gw 0-14 10YR 3/1 (brownish black) SiC lmsbk fi st & pl cvf, ff gw 14-36 10YR 4/4 (dark grallowish black) SiC lmsbk fi st & pl cvf, ff gw 36-55 10YR 5/6 (gellowish brown) LS lmsbk fi st & pl n cvf, ff cw 55-90 2.5Y 5/3 (sellowish brown) SiC 1fsbk fi st & pl nf cvf, ff cw 90-110 10YR 4/3 (dark perown) SiC 2msbk fi st & pl nf cc 15-25 10YR 8/6 (gellowish brown) SC 1fsbk vf cw st st <td< th=""><th>Profile</th><th>Dep</th><th>th (cm)</th><th>- Son Color (ministra noranon)</th><th>a mayor</th><th></th><th>Moist</th><th>Wet</th><th></th><th></th><th>- 1</th></td<>	Profile	Dep	th (cm)	- Son Color (ministra noranon)	a mayor		Moist	Wet			- 1
15 - 135 10YR 7/3 (very pale brown) LS fi sst & spl 35 - 155 10YR 6/2 (light brownish gray) SiCL imshk fi sst & spl 55 - 175 10YR 6/2 (light brownish black) SiC 1mshk fi st & spl cvf, cf, cm cs 14 - 10YR 3/1 (brownish black) SiC 1mshk fi st & pl cvf, fif gw 36 - 55 10YR 8/4 (dark yellowish brown) SiC 1mshk fi st & pl vf cw 55 - 90 2.5X 5/3 (yellowish brown) LS 1mshk fi st & pl n cs 50 - 110 10YR 8/3 (dark brown) LS 1mshk fi st & pl n cv 50 - 110 10YR 8/3 (dark brown) SiC 1mshk vf vg cv 50 - 120 10YR 8/3 (dark brown) SiC 1mshk vf vg cv 50 - 10 10YR 8/3 (dark yellowish brown) SC 1mshk vf st & pl vf cw 50	4	CB1	95 - 11	4/6 (light	SC		ų	st & pl			
35 - 155 10YR 6/2 (fight brownish gray) SiCL finst & spl 55 - 155 10YR 4/1 (dark gray) SiC Imsbk finst & spl cvf, cf, cm cs 1 - 1 (10YR 3/1 (drownish black)) SiC Imsbk finst & ppl cvf, cf, cm cs 36 - 55 10YR 4/4 (dark yellowish brown) SC 1msbk finst & ppl vff cw 55 - 90 2.5Y 5/3 (yellowish brown) LS 1msbk finst & ppl nf cv 55 - 90 2.5Y 5/3 (yellowish brown) LS 1msbk finst & pl nf cv 55 - 90 2.5Y 5/3 (yellowish brown) LS 1msbk finst & pl nf cv cw 50 - 110 10YR 4/3 (dark brown) SiC 1fsbk nf vst & vpl nf cv cw 50 - 80 10YR 5/6 (gellowish brown) SC 1msbk vf vst & pl vf cw 50 - 80 10YR 5/6 (gellowish brown) SC 1fsbk vf vst & spl vf cw		CB2	15 - 13	7/3 (very	LS		ų	sst & spl			
55 - 175 10YR 4/1 (dark gray) SC 1msbk fi sst & spl cvf, cf, cm cs 14 - 36 10YR 4/4 (dark gray) SiC 1msbk fi st & pl fvf, ff gw 14 - 36 10YR 4/4 (dark yellowish brown) SiC 1msbk fi st & pl vff cw 55 - 90 2.5Y 5/3 (yellowish brown) LS 1msbk fi st & pl n 90 - 110 10YR 4/3 (dark brown) LS 1msbk fi st & pl n 15 - 25 10YR 5/6 (yellowish brown) SiC 1msbk vfi vst & vpl rf cw 50 - 80 10YR 5/6 (yellowish brown) SiC 1msbk vfi vst & vpl vf cw 50 - 80 10YR 5/6 (yellowish brown) SC 1msbk vfi sst & pl vf cw 50 - 10 10YR 5/6 (yellowish brown) SC 1msbk vfi sst & pl vf cw 40 - 160 10YR 5/6 (yellowish brown) SC 1msbk vfi sst & pl rf cw 40 - 10 10YR		CB3	35 - 15	6/2	Sicl		ų	sst & spl			
0 - 14 10YR 3/1 (brownish black) SiC Imsbk fi st & pl cvt, cf, cm cs 14 - 36 10YR 4/4 (dark yellowish SiC Imsbk fi st & pl vff gw 55 - 90 2.5Y 3/6 (cycllowish brown) LS Imsbk fi st & pl n 90 - 110 10YR 4/3 (dark brown) LS Imsbk fi st & pl n 10 - 15 10YR 3/3 (dark brown) LS 1sbk fi st & pl n 15 - 25 10YR 4/3 (dark brown) SiC 1msbk vfi st & pl n cv 15 - 25 10YR 5/6 (cycllowish brown) SiC 1msbk vfi st & pl n cw 20 - 80 10YR 5/6 (cycllowish brown) SC 1msbk vfi st & pl n cw 20 - 140 10YR 5/6 (cycllowish brown) SC 1fsbk vfi st & pl rf cw 40 - 160 10YR 4/4 (dark yellowish brown) C 1sbk vfi st		CB4	55 - 17	4/1	SC		ų	sst & spl			
14 - 36 10YR 4/4 (dark yellowish SiC Imsbk fi st & pl fvf, ff gw 36 - 55 10YR 5/6 (yellowish brown) 1.S 1msbk fi st & pl vff cw 55 - 90 2.5Y 5/3 (yellowish brown) 1.S 1msbk fi st & pl nf cvf, fm cs 90 - 110 10YR 3/3 (dark brown) 1.S 1msbk fi st & pl rvf, fm cs 15 - 25 10YR 3/6 (dark yellowish brown) SiC 1msbk vfi vst & vpl rff cw 50 - 80 10YR 5/6 (yellowish brown) SC 1msbk vfi st & pl vf cw 20 - 140 10YR 5/6 (yellowish brown) SC 1fsbk vfi st & pl vf cw 20 - 140 10YR 5/6 (yellowish brown) LS 1fsbk vfi st & pl rf cw 20 - 140 10YR 5/6 (yellowish brown) LS 1fsbk vfi st & pl rf cw 40 - 160 10	5	Ap	0 -	3/1	SiC	1msbk	ų	st & pl	cvf, cf, cm	CS	u
36 - 55 10YR 5/6 (yellowish brown) SC 1msbk fi st & pl vff cw 55 - 90 2.5Y 5/3 (yellowish brown) 1.5 1msbk fi st & pl n 90 - 110 10YR 4/3 (dark brown) 1.5 1msbk fi st & pl n 15 - 25 10YR 3/6 (dark yellowish brown) SiC 2msbk fi vst & vpl ff cw 25 - 50 10YR 6/2 (light brownish) SC 1msbk vfi vst & vpl vf cw 50 - 80 10YR 5/6 (yellowish brown) SC 1msbk vfi st & pl vf cw 20 - 140 10YR 5/6 (yellowish brown) SC 1fsbk vfi st & spl vf cw 40 - 160 10YR 5/6 (yellowish brown) CL 1msbk fi st & spl ff cw 10 - 13 10YR 5/6 (yellowish brown) CL 2csbk ff st & pl ff cw 10 - 13 10YR 5/6 (yellowish brown) SiCL 2csbk		Bw	14 -	4/4	SiC	1msbk	Э	st & pl	fvf, ff	ws	п
36 - 55 10YR \$ 5/6 (yellowish brown) SC 1msbk fi st & pl vff cw 55 - 90 2.5Y \$ 5/3 (yellowish brown) LS 1msbk fi st & pl n 90 - 110 10YR 4/3 (dark brown) LS 1msbk fi st & pl n 15 - 25 10YR 3/3 (dark brown) SiC 2msbk fi st & pl ff cx 15 - 25 10YR 8/2 (light brownish) SiC 2msbk rif vf cw 25 - 50 10YR 8/2 (light brownish brown) SC 1msbk vfi st & pl rf cw 50 - 80 10YR 8/2 (light brownish brown) SC 1msbk vfi st & pl rf cw 40 - 160 10YR 8/4 (dark yellowish brown) LS ff st & pl rf cw 13 - 40 10YR 8/4 (olive brown) SIC 2csbk ff st & pl rf cw 40 - 10 2.5Y 4/6 (olive brown) SIC 2csbk ff sst & spl				brown)							
55 - 90 2.5Y 5/3 (yellowish brown) LS Imsbk fi st & pl n 90 - 110 10YR 4/3 (dark brown) LS 1 msbk fi st & pl rvf, fm cs 15 - 25 10YR 3/3 (dark brown) SiC 1 msbk fi vst & pl ff cv 15 - 25 10YR 5/6 (gellowish brown) SC 1 msbk vf st & pl vf cw 50 - 80 10YR 5/6 (gellowish brown) SC 1 msbk vf st & pl vf cw 80 - 120 10YR 5/6 (gellowish brown) SC 1 msbk vf st & pl vf cw 40 - 160 10YR 5/6 (gellowish brown) LS ff sst & spl vf cw 40 - 160 10YR 5/6 (gellowish brown) CL 1 msbk ff sst & spl rf, fc cw 40 - 160 10YR 8/6 (gellowish brown) SC 1 msbk ff sst & spl rf, fc cw 13 - 40 10YR 8/6 (gelive brown) SiCL 2 csbk		BC	36 -	10YR 5/6 (yellowish brown)	SC	1msbk	ų	st & pl	vff	CW	u
00-110 10YR 4/3 (dark brown) LS fi st & spl 0-15 10YR 3/3 (dark brown) SiC 2msbk fi vst & vpl ff cw 15-25 10YR 3/3 (dark brown) SiC 2msbk fi vst & vpl ff cw 25-50 10YR 6/2 (light brownish) SC 1msbk vfi st & pl vf cw 50-80 10YR 5/6 (yellowish brown) SC 1msbk vfi st & pl vf cw 80-120 10YR 5/6 (yellowish brown) SC 1fsbk vfi st & spl cw 40-160 10YR 4/4 (dark yellowish brown) SC 1msbk fi sst & spl ff, fc cw 0-13 10YR 5/6 (yellowish brown) CL 1msbk fi sst & spl ff, fc cw 40-60 2.5Y 4/6 (olive brown) SiCL 2csbk fi sst & spl ff gw 50-110 2.5Y 4/6 (olive brown) SiC 2csbk ff sst & spl ff gw 10-130 10YR 4/6 (dark yellowish SiC ff <t< td=""><td></td><td>C1</td><td></td><td>1.8 7</td><td>LS</td><td>1msbk</td><td>ų</td><td>st & pl</td><td>п</td><td></td><td>C</td></t<>		C1		1.8 7	LS	1msbk	ų	st & pl	п		C
0-15 10YR 3/3 (dark brown) SiC 1fsbk fi st & pl cvf, fm cs 15-25 10YR 3/6 (dark yellowish SiC 2msbk fi vst & vpl ff cw 25-50 10YR 6/2 (light brownish) SC 1msbk vfi st & pl vf cw 50-80 10YR 5/6 (yellowish brown) SC 1fsbk vfi st & pl cw 20-140 10YR 5/6 (yellowish brown) LS 1fsbk vfi st & spl cvf, cf cw 40-160 10YR 4/4 (dark yellowish brown) CL 1msbk fi st & pl ff, fc cw 40-60 2.5Y 4/6 (olive brown) SiCL 2csbk ff st & spl ff gw 50-110 2.5Y 4/6 (olive brown) SiC 2csbk ff st & spl ff gw 10-130 10YR 4/6 (dark yellowish SiC st & st & spl ff gw		C_2	90	10YR 4/3 (dark brown)	LS		ij	sst & spl			
15 - 25 10YR 3/6 (dark yellowish) SiC 2msbk fi vst & vpl ff cw 25 - 50 10YR 6/2 (light brownish) SC 1msbk vfi st & pl vf cw 50 - 80 10YR 5/6 (yellowish brown) SC 1msbk vfi st & pl vf cw 80 - 120 10YR 5/6 (yellowish brown) LS ff sst & spl vf cw 40 - 160 10YR 4/4 (dark yellowish brown) SC 1msbk fi sst & spl ff, fc cw 13 - 40 10YR 5/6 (yellowish brown) CL 1msbk fi sst & spl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk ff sst & spl ff gw 50 - 110 2.5Y 4/6 (olive brown) SiC 2csbk ff sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish SiC 2csbk ff sst & spl ff 10 - 130 10YR 4/6 (dark yellowish SiC 2csbk </td <td>9</td> <td>Αp</td> <td>0 -</td> <td>10YR 3/3 (dark brown)</td> <td>SiC</td> <td>1fsbk</td> <td>ij</td> <td>st & pl</td> <td>cvf, fm</td> <td>CS</td> <td>u</td>	9	Αp	0 -	10YR 3/3 (dark brown)	SiC	1fsbk	ij	st & pl	cvf, fm	CS	u
25 - 50 10YR 6/2 (light brownish) SC 1 msbk vfi st & pl vf cw 50 - 80 10YR 5/6 (yellowish brown) SC 1 msbk vfi st & pl vf cw 80 - 120 10YR 5/6 (yellowish brown) LS f sst & pl vf cw 20 - 140 10YR 5/6 (yellowish brown) LS f sst & spl rf cvf, cf cw 40 - 160 10YR 4/4 (dark yellowish brown) CL 1 msbk fi sst & spl ff, fc cw 13 - 40 10YR 5/6 (yellowish brown) C 2 csbk ff st & pl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2 csbk ff sst & spl ff gw 10 - 13 10YR 4/6 (dark yellowish SiC 2 csbk ff sst & spl ff gw brown) brown) ff sst & spl ff gw		AB	15 -	10YR 3/6 (dark yellowish	SiC	2msbk	ų	vst & vpl	ff	CW	f
25 - 50 10YR 6/2 (light brownish) SC 1msbk vfi vst & vpl vf cw 50 - 80 10YR 5/6 (yellowish brown) SC 1fsbk vfi st & pl vf cw 80 - 120 10YR 5/6 (yellowish brown) LS 1fsbk vfi st & pl cw 20 - 140 10YR 5/6 (yellowish brown) SC fi sst & spl ff, fc cw 40 - 160 10YR 5/6 (yellowish brown) CL 1msbk fi sst & spl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk ff sst & spl ff gw 60 - 110 2.5Y 4/6 (olive brown) SiC 2csbk ff sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish SiC ff sst & spl ff gw brown) brown) ff sst & spl ff gw sst & spl ff				brown)							
50 - 80 10YR 5/6 (yellowish brown) SC 1msbk vfi st & pl vf cw 80 - 120 10YR 5/8 (yellowish brown) SC 1fsbk vfi st & pl cw 20 - 140 10YR 5/6 (yellowish brown) LS ff sst & spl cvf, cf cw 40 - 160 10YR 4/4 (dark yellowish brown) CL 1msbk ff sst & spl ff, fc cw 13 - 40 10YR 5/6 (yellowish brown) C 2csbk ff sst & spl ff gw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk ff sst & spl ff gw 50 - 110 2.5Y 4/6 (olive brown) Si 2csbk ff sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish SiC 2csbk ff sst & spl ff prown)		Bw		10YR 6/2 (light brownish)	SC	1msbk	vfi	vst & vpl	۰ţ	CW	C
80 - 120 10YR 5/8 (yellowish brown) SC 1fsbk vfi sst & pl 20 - 140 10YR 5/6 (yellowish brown) LS fi sst & spl 40 - 160 10YR 4/4 (dark yellowish brown) SC fi sst & spl 0 - 13 10YR 2/1 (black) CL 1msbk fi sst & spl ff, fc cw 13 - 40 10YR 5/6 (yellowish brown) C 2csbk fi sst & spl ff gw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk fi sst & spl ff gw 60 - 110 2.5Y 4/6 (olive brown) SiC 2csbk vfi sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish SiC fi sst & spl ff brown) brown) sst & spl ff sst & spl ff		BC_1	50 -	10YR 5/6 (yellowish brown)	SC	1msbk	vfi	st & pl	۸ţ	CW	m
20 - 140 10YR 5/6 (yellowish brown) LS fi sst & spl 40 - 160 10YR 4/4 (dark yellowish SC fi sst & spl brown) CL 1 msbk fi sst & spl cvf, cf cw 13 - 40 10YR 5/6 (yellowish brown) C 2 csbk fi st & pl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2 csbk ff sst & spl ff gw 60 - 110 2.5Y 4/6 (olive brown) SL 2 csbk ff sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish SiC 2 csbk ff sst & spl ff brown) brown)		BC_2	80 - 1	10YR 5/8 (yellowish brown)	SC	1fsbk	vfi	st & pl			m
40 - 160 10YR 4/4 (dark yellowish brown) SC fi sst & spl brown) 0 - 13 10YR 2/1 (black) CL 1 msbk fi sst & spl cvf, cf cw 13 - 40 10YR 5/6 (yellowish brown) C 2 csbk fi st & pl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2 csbk ff sst & spl ff gw 60 - 110 2.5Y 4/6 (olive brown) SL 2 csbk vf sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish) SiC ff sst & spl n brown) brown) ff sst & spl n		BC_3	20 -	10YR 5/6 (yellowish brown)	LS		ų	×			
0 - 13 10YR 2/1 (black) CL 1 msbk fi sst & spl cvf, cf cw 13 - 40 10YR 5/6 (yellowish brown) C 2 csbk fi st & pl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2 csbk fi sst & spl ff gw 60 - 110 2.5Y 4/6 (olive brown) SiC 2 csbk vfi sst & spl ff gw 10 - 130 10YR 4/6 (dark yellowish) SiC fi sst & spl n brown) brown)		BC_4	40 -	10YR 4/4 (dark yellowish	SC		fi	×			
Ah $0-13$ $10YR$ $2/1$ (black) CL $1msbk$ fi $sst \& spl$ cvf, cf cw AB $13-40$ $10YR$ $5/6$ (yellowish brown) C $2csbk$ fi $st \& pl$ ff, fc cw Bw $40-60$ $2.5Y$ $4/6$ (olive brown) SiCL $2csbk$ fi $sst \& spl$ ff gw CB ₁ $60-110$ $2.5Y$ $4/6$ (olive brown) SL $2csbk$ vfi $sst \& spl$ ff CB ₂ $110-130$ $10YR$ $4/6$ (dark yellowish SiC $3csbk$ fi fi $sst \& spl$ fi fi $sst \& spl$ fi fi fi fi fi fi fi fi				brown)							
13 - 40 10YR 5/6 (yellowish brown) C 2csbk fi st & pl ff, fc cw 40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk ff gw 60 - 110 2.5Y 4/6 (olive brown) SL 2csbk vfi sst & spl ff 110 - 130 10YR 4/6 (dark yellowish) SiC fi sst & spl n brown) brown) st & st & spl n	7	Ah	0 - 13	10YR 2/1 (black)	CL	1msbk	ij	sst & spl	cvf, cf	CW	u
40 - 60 2.5Y 4/6 (olive brown) SiCL 2csbk ff gw 60 - 110 2.5Y 4/6 (olive brown) SL 2csbk vfi sst & spl ff 110 - 130 10YR 4/6 (dark yellowish sellowish brown) SiC ff sst & spl n		AB	13 - 40	10YR 5/6 (yellowish brown)	С	2csbk	ų	st & pl	ff, fc	CW	u
60 - 110 2.5Y 4/6 (olive brown) SL 2csbk vfi sst & spl ff 110 - 130 10YR 4/6 (dark yellowish brown) SiC fi sst & spl n		Bw	40 - 60	2.5Y 4/6 (olive brown)	SiCL	2csbk	ij	sst & spl	ff	Sw	п
110 - 130		CB_1	60 - 110	4/6 (olive	SL	2csbk	νfi	sst & spl	££.		
brown)		CB_2	110 - 130		SiC		ij	sst & spl	п		

	_	•
	С	2
	ï	5
	٠,	ø
*	Ĭ	1
	Ξ	2
	Ċ	¥
	_	3
	Ξ	4
	ь	ė
*	۳	٠
	٠	-
	С	2
	Ξ	ξ
		ì
*		٦
٦	_	ŕ
		÷
ς	`	i
	ς	ì
-	3	-
	1	3
-	Ξ	3
_	¥	*
£		-

SiC fi sst & spl CL fi sst & spl CL final nst- non sticky n- none fr- few very fine fre- frable sst- slightly sticky vff- very few fine crf- con pl- non plastic spl- slightly plastic vpl- very plastic spl- slightly plastic n- none f- few common m- many	Soil	Soil Horizon	rizon	C : C . L. Afrana II manning	Towerran	Consistence	Roofe	Boundary Rock fraoments
CB ₃ 130 - 150 10YR 4/6 (dark yellowish SiC fi sst & spl brown) C 150 - 170 10YR 6/3 (pale brown) C 150 - 170 10YR 6/3 (pale brown) C 150 - 170 10YR 6/3 (pale brown) Situations Situations Situations Analy Clay Imshe, weak medium subangular blocky It Loam Analy Clay As abrupts mooth Boundary: As abrupt smooth C c- common C common C contained C common C common	Profile -	Depth	(cm)	Soll Color (Munsch notation)				
brown) C 150 - 170 10YR 6/3 (pale brown) Canaistance: Maid Canaistance: Adve diffuse smooth Connistance: Anaid Canaistance: Connistance: Free Canaistance: Free Canaistance: Bandary: Canaistance: Anaid Canaistance: Anaid Canaistance: Bandary: Connistance: Free Canaistance: Bandary: Connistance: Free Canaistance: Anaid Canaistance: Bandary: Connistance: Free Common Cover clear wany Common Common Cover diffuse wany Common Cover diffuse wany Common Common Cover diffuse wany Common Cover diffuse wany Cover many	7	CB ₃	1 1	10YR 4/6 (dark yellowish	SiC		lds	
intions Stracture: Maist Ma		C	150 - 170	6/3 (pale brown		sst	lds	
Sindine: Maid IFed Size Size	Abbreviatio	SU						
ndy Clay Imsbe- weak medium subangular blocky fi- firm nst- non sticky n- none sandy Clay Loam 2msbe- moderate medium subangular blocky vfi- very firm st- sticky ref- very fine Silty Clay Loam 1csbk- weak coarse subangular blocky fr- friable sst- slightly sticky ref- few very fine subangular blocky ref- friable st- slightly sticky ref- few very fine lty Clay 1csbk- moderate coarse subangular blocky plastic plastic plastic syloam 1fsbk- weak fine subangular blocky plastic plastic spl- slightly plastic sa- abrupt smooth cs- clear smooth ce- common cw- clear wavy m- many dw- diffuse smooth change m- many m- many	Texture:		Structure		Const	stence:		Roots:
dy Clay Insbk- weak medium subangular blocky of Firm nst- non sticky n- none and Clay Loam 2msbk- moderate medium subangular blocky of Fire friable statistics as slightly sticky and 1csbk- weak coarse subangular blocky of Fire friable states with the subangular blocky of Fire friable states of Fisher weak fine subangular blocky of Fisher or highly plastic splastic states and the same of Fisher weak fine subangular blocky of Fisher weak fine suba					Moist	IV'et	Size	Abundance
ndy Clay Loam 2msbk- moderate medium subangular blocky ffr- friable striable striabl	SC- Sandy	Clav	1msbk-			nst- non sticky	n- none	fc- few coarse
Ity Clay Loam Icsbk- weak coarse subangular blocky fr- friable sst- slightly sticky fvf- few very fine Loam 2csbk- moderate coarse subangular blocky rest very sticky vff- very few fine y Clay 1fsbk- weak fine subangular blocky pl- plastic ff- few fine y loam spl- slightly plastic spl- slightly plastic dy clay vpl- very plastic vpl- very plastic my sand Boundary: n- none f- few ds- diffuse smooth c- common c- common cw- clear wavy m- many	SCL-Sand	v Clay Loam	2msbk-		vfi- very firm	st- sticky		
Loam 2csbk- moderate coarse subangular blocky vst- very sticky vff- very few fine lfsbk- weak fine subangular blocky npl- non plastic pl- plastic spl- slightly plastic pl- plastic spl- slightly plastic vpl- very plastic vpl- very plastic as- abrupt smooth cs- clear smooth cs- clear smooth cc- common cw- clear wavy dw- diffuse smooth c- common dw- diffuse wavy w- m- many	SiCL- Silty	Clay Loam		-		sst- slightly sticky	fvf- few very fine	cf- common fine
y Clay 1fsbk- weak fine subangular blocky ploam plastic pl- plastic spl- slightly plastic spl- slightly plastic with carry plastic plastic plastic plastic plastic way plastic	SiL- Silt Lo	am		moderate coarse subangular blocky		vst- very sticky	off- very few fine	cvf- common very fine
y loam dy clay my sand my sand Boundary: as- abrupt smooth cs- clear smooth ds- diffuse smooth cw- clear wavy dw- diffuse wavy	SiC. Silty C	Jay		weak fine subangular blocky		npl- non plastic	ff- few fine	cm- common medium
y loam dy clay Boundary: as- abrupt smooth cs- clear smooth ds- diffuse smooth cw- clear wavy dw- diffuse wavy	C- Clay	9				pl- plastic		
Sandy clay Loamy sand as- abrupt smooth cs- clear smooth ds- diffuse smooth cw- clear wavy dw- diffuse wavy	CL. Clay k	am				spl- slightly plastic		
Boundary: as- abrupt smooth cs- clear smooth ds- diffuse smooth cw- clear wavy dw- diffuse wavy	SC-Sandy	clay				vpl- very plastic		
rupt smooth ear smooth ffuse smooth lear wavy iffuse wavy	LS- Loamy	burs.						
brupt smooth lear smooth liffuse smooth clear wavy diffuse wavy				Boundary:		Rock fragments:		
lear smooth liffuse smooth clear wavy diffuse wavy						n- none		
liffuse smooth clear wavy diffuse wavy						f- few		
clear wavy diffuse wavy						c- common		
dw- diffuse wavy				cw- clear wavy		m- many		
				dw- diffuse wavy				

C. Soil physical and hydrological properties

1. Soil texture

Soil texture, the relative proportion of sand, silt and clay particles, influences the fertility, water relations, mechanical resistance, and erodibility of the soil. Except for the footslope soil (Soil Profile 1) and the shoulder soil (Soil Profile 4) which have high sand and clay contents, respectively, in the A horizon, all the other soils examined have generally equal distribution of sand, silt and clay in the A horizon and thus have clay loam texture (Table 3 and Fig 3). The lower backslope soil (Soil Profile 2) has a considerable clay increase in the B horizon and qualifies as an argillic (Bt) horizon. Except Soil Profile 2, all the soils are weakly developed suggesting the possible role of soil erosion in impeding soil development.

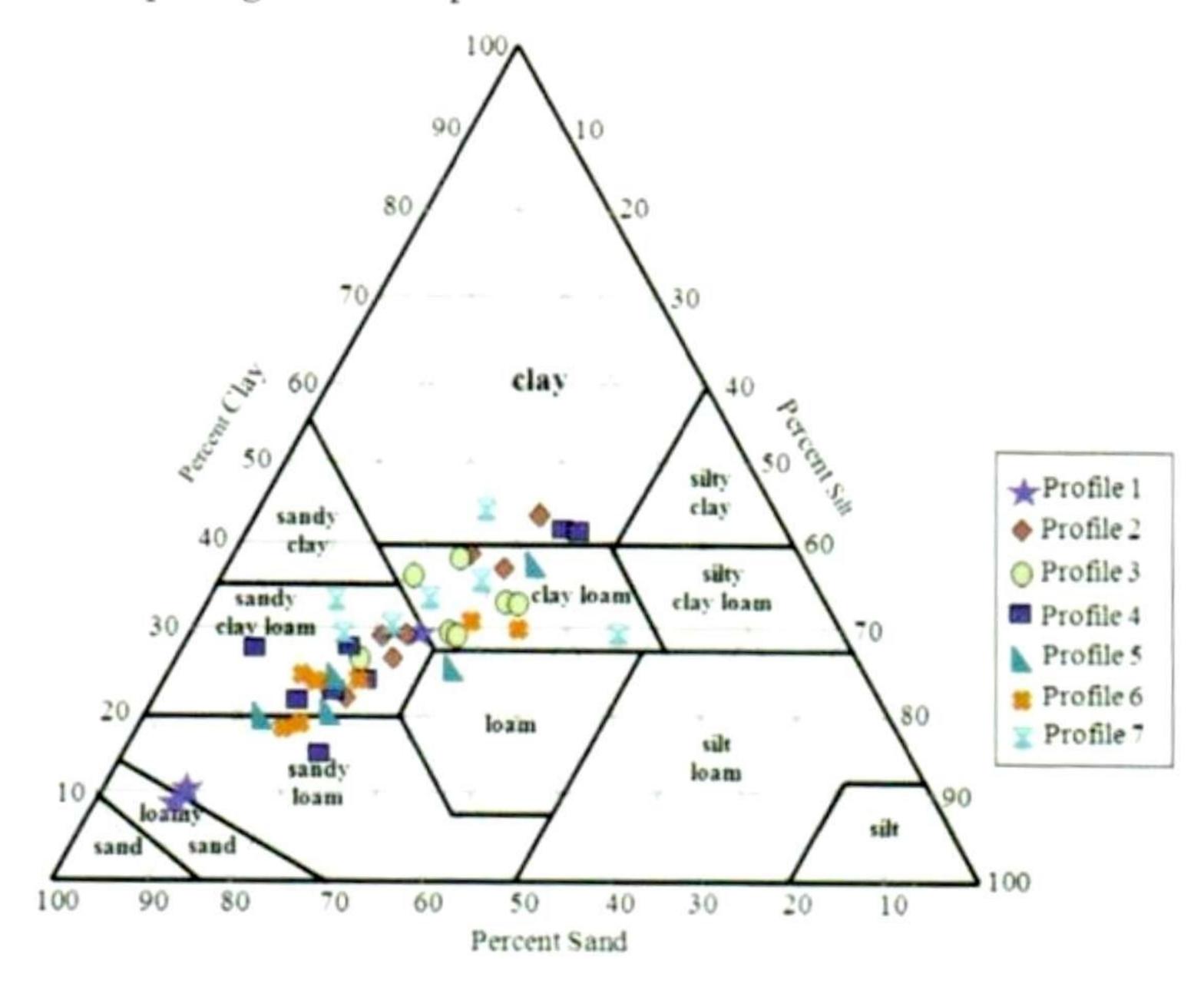


Figure 3. Particle size distribution and textural classes of horizons from the studied soil profiles derived from ophiolitic rock in Basper, Tacloban, Northeastern Leyte

Table 3. Particle size distribution of the soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Levte.

	vortneaste	in Leyte.				
Soil	Soil Ho	rizon	Particle	Size Distribu	tion (%)	Tantonal Class
Profile	Depth (cm)	Sand	Silt	Clay	 Textural Class
1	Ap	0 - 25	45.5	25.7	28.8	Sandy clay loam
	C	25 - 56	78.0	9.5	12.5	Sandy loam
	R	> 56	-	-	-	-
2	Ap	0 - 12	33.0	30.8	36.2	Clay loam
	Bt	12 - 52	27.0	30.0	43.0	Clay
	BC	52 - 90	38.5	25.00	36.5	Clay loam
	C_1	90 - 100	58.0	20.5	21.5	Sandy clay loam
	C_2	100 - 120	50.7	21.5	27.8	Sandy clay loam
	C_3	120 - 140	50.5	24.2	25.3	Sandy clay loam
	C_4	140 - 160	46.7	24.00	29.3	Sandy clay loam
3	Ap	0-15	34.7	31.8	33.5	Clay loam

Table 3. Continuation.

Soil	Soil Horizo	n	Particle S	Size Distribu	tion (%)	T 1.01
Profile	Depth (cm)		Sand	Silt	Clay	Textural Class
	Bw	15 - 45	35.0	26.00	39.0	Clay loam
	BC	45 - 65	44.5	19.5	36.0	Clay loam
	C_1	65 - 90	54.5	20.5	25.0	Sandy clay loam
	C_2	90 - 110	43.5	27.2	29.3	Clay loam
	C_3	110 - 130	44.0	29.00	27.0	Clay loam
	C_4	130 - 150	32.8	33.5	33.8	Clay loam
4	Ap	0 - 12	22.5	34.00	43.5	Clay
	Bw	12 - 50	23.2	36.00	40.8	Clay
	BC_1	50 - 70	53.7	19.00	27.3	Sandy clay loam
	BC_2	70 - 95	63.0	16.00	21.0	Sandy clay loam
	CB_1	95 - 115	58.2	20.3	21.5	Sandy clay loam
	CB_2	115 - 135	65.7	7.3	27.0	Sandy clay loam
	CB_3	135 - 155	54.5	22.00	23.5	Sandy clay loam
	CB_4	155 - 175	65.0	21.3	13.7	Sandy loam
5	Ар	0 - 14	30.5	33.2	36.3	Clay loam
	Bw	14 - 36	44.5	29.00	26.5	Loam
	BC	36 - 55	57.2	18.8	24.0	Sandy clay loam
	C_1	55 - 90	68.2	13.3	18.5	Sandy loam
	C_2	90 - 110	60.7	19.3	20.0	Sandy loam
6	Ap	0 - 15	36.0	33.5	30.5	Clay loam
	AB	15 - 25	39.0	29.5	31.5	Clay loam
	Bw	25 - 50	60.7	17.3	22.0	Sandy clay loam
	BC1	50 - 80	55.5	21.7	22.8	Sandy clay loam
	BC2	80 - 120	66.5	14.00	19.5	Sandy loam
	BC3	120 - 140	65.7	16.3	18.0	Sandy loam
	BC4	140 - 160	60.5	16.5	23.0	Sandy clay loam
7	Ah	0 - 13	35.7	27.3	37.0	Clay loam
	AB	13 - 40	25.7	48.00	26.3	Clay loam
	Bw	40 - 60	43.2	23.8	33.0	Clay loam
	CB1	60 - 110	54.5	16.7	28.8	Sandy clay loam
	CB2	110 - 130	31.2	26.3	42.5	Clay
	CB3	130 - 150	52.7	13.8	33.5	Sandy clay loam
	C	150 - 170	47.2	22.00	30.8	Sandy clay loam

2. Bulk Density

Soil bulk density refers to the dry weight of soil per unit soil volume. Results reveal that surface horizons have generally lower bulk density values than the subsurface horizons (Fig. 4). This has favored the growth of shallow rooted vegetation, mostly grasses, at the upper solum of the profile. Moreover, it also suggests the role of organic matter and biological activity in improving soil aggregation resulting in lower bulk density values. The intermediate (>1.40 g/cm) bulk density values of the subsoils indicate that they are generally compact thus, restricting root penetration and water movement at deeper depth.

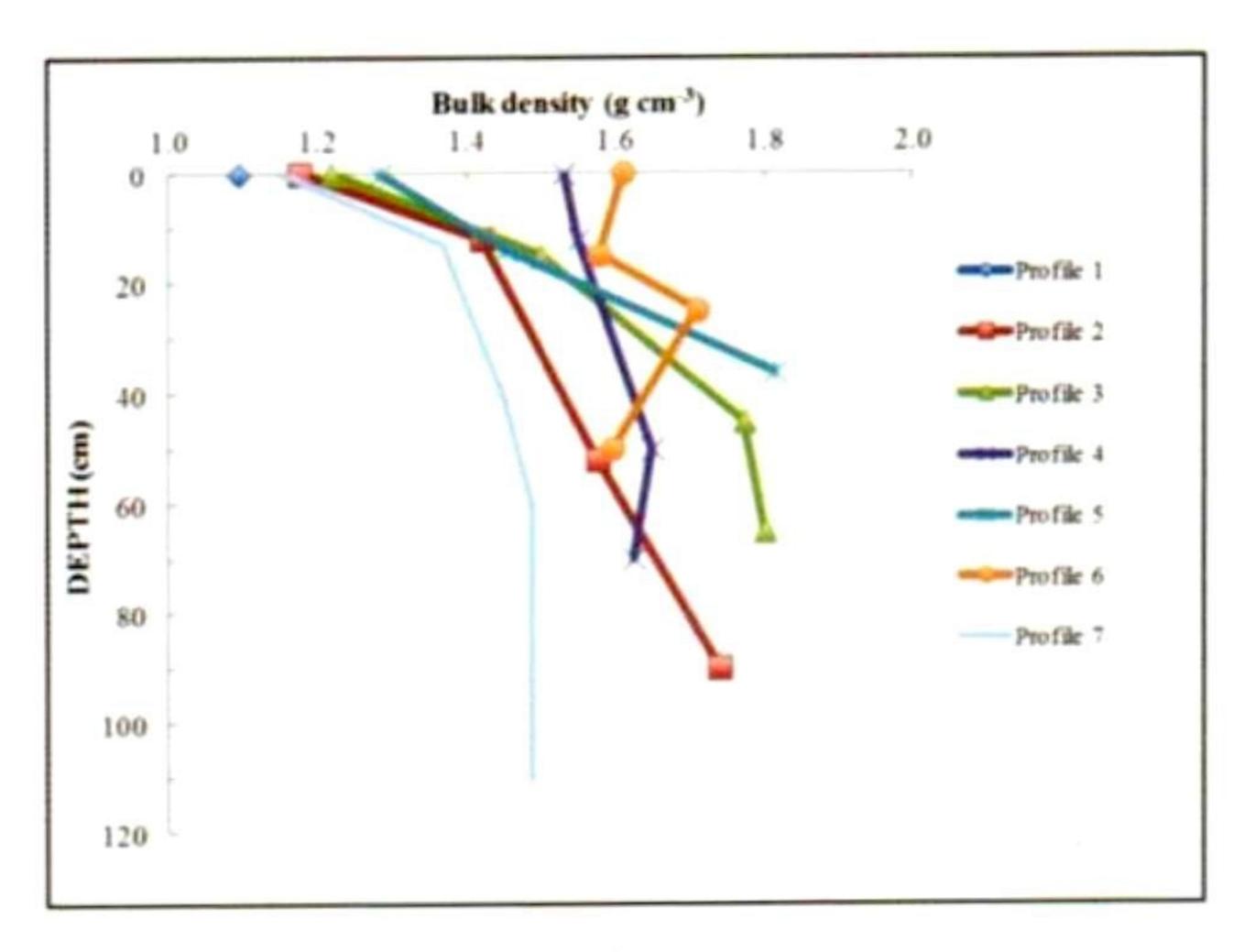


Figure 4. Depth function of bulk density (g cm³) of soils developed from ultramafic rock in Basper, Tacloban, Northeastern Leyte (n=49)

3. Total Porosity

Total porosity is an estimate that is useful in quantifying the amount of soil pores including their size distribution (Landon, 1991). Total air space, on one hand, is equivalent to the volume percentage water content of soil at maximum saturation whereby, the volume of water approximates the amount of pore space and is used to estimate total porosity (Foth, 1990). Most of the soils investigated reveal decreasing total porosity with soil depth confirming its contrasting trend with bulk density values (Fig. 5). These results pose problematic root penetration as well as impeded air and water movement in the subsoils.

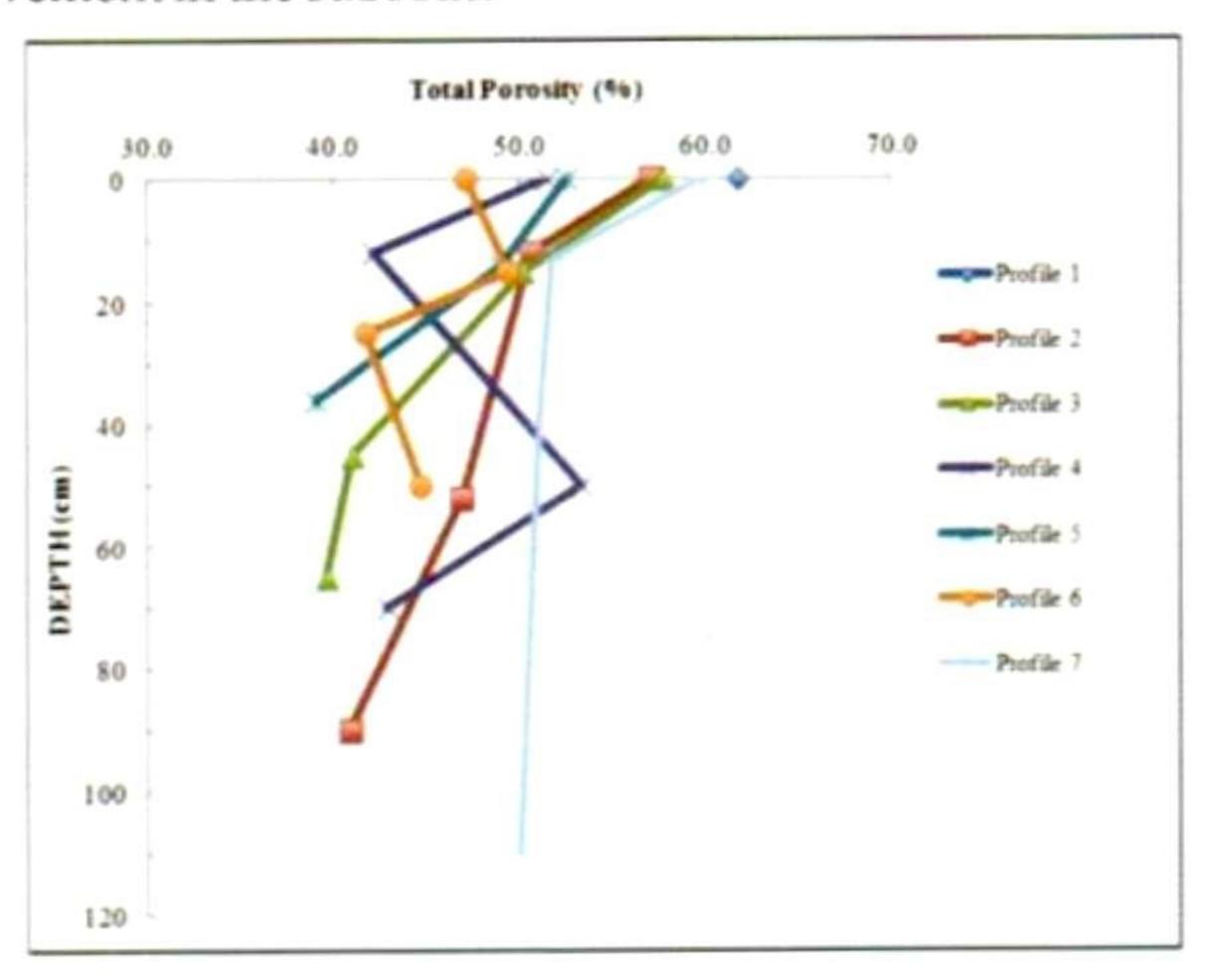


Figure 5. Depth function of total porosity (%) of soils developed from ultramafic rock in Basper, Tacloban, Northeastern Leyte (n=49)

4. Saturated hydraulic conductivity (Ksat)

Water in soils is seldom in equilibrium since rainfall and evapotranspiration always disturb any equilibrium. Thus, soil water is commonly in motion and always towards the lowest potential. There are three types of water movement in soils: saturated flow, unsaturated flow, and vapor flow (Kutilek and Nielsen, 1994).

Ksat is the most common reference datum to compare water movement in different soils, layers, or materials. It is a quantitative measure that has become the industry standard. The following classes are given by the USDA Soil Survey Manual (Soil Survey Staff, 1993) for different values of Ksat (cm hr) measured in the field: very high (>36.0), high (3.60-36.0), moderately high (0.360-3.60), moderately low (0.0360-0.360), low (0.00360-0.0360), very low (<0.00360).

Table 4 presents the Ksat in Basper determined by Amoozemeter in the field and by permeameter in the laboratory after collection of soil cores from the study site. As shown in Table 4, Ksat values measured by the permeameter in the laboratory are generally higher for a given soil than the Ksat determined in the field by the Amoozemeter. Ksat values of the surface soil horizons determined by the Amoozemeter are moderately low to moderately high except for Soil Profile 6 which has very low (zero) values in the entire soil profile. The Ksat values of the surface horizons of most soils in the watershed are also higher than those of the subsurface horizons. This is attributed to better aggregation of the soil surface brought about by higher organic C content (see discussion on bulk density and porosity). This condition enhances relatively fast water infiltration but because the subsoil is compact, water tends to move laterally (also enhanced by sloping topography) which partly explains the landslide-prone nature of the soils in the watershed. It can also be seen that the Ksat measured both in the field and in the laboratory slightly agree with common Ksat values obtained in soils with different textures (Table 5).

Table 4. Saturated hydraulic conductivity (Ksat) measurements of soils developed from ultramafic rock in Basper, Tacloban, Northeastern Leyte

Profile No.	Depth	Permeameter	D Cl NI	Depth	Amoozemeter
Prome No.	(cm)	Ksat (cm hr-1)	Profile No.	(cm)	Ksat (cm hr-1)
Profile 1			Profile 1		
A	0-12	0.065		0-25	0.931
C	40-60	0.000		25-50	0.081
R	>60	4.432		50-75	0.095
Profile 2			Profile 2		
Ap	0-12	1.108		0-25	0.194
Bt	12-52	0.292		25-50	0.429
BC	52-90	0.000		50-75	0.004
C	> 90	0.013		75-100	0.026
Profile 3			Profile 3		
Ap	0-15	0.183		0-30	0.040
Bt	15-45	0.008		30-60	0.123
BC	45-65	0.317		60-85	0.106
C	>65	1.629		85-100	0.171
Profile 4			Profile 4		
Ap	0-12	0.921		0-30	0.038
Bt	12-50	0.004		30-60	0.085
Profile 5			Profile 5		
Ap	0-14	11.750		0-30	0.785
Bw	14-36	7.479		30-50	3.553

Table. 4 Continuation.

D C1 - NI	Depth	Permeameter	Profile No.	Depth	Amoozemeter
Profile No.	(cm)	Ksat (cm hr-1)	Prome No.	(cm)	Ksat (cm hr-1)
Profile 6			Profile 6		
Ap	0-15	2.117		0-25	0.000
BC1	15-37	0.000		25-60	0.000
BC2	37-85	0.004			
C	>85	1.233			
Profile 7			Profile 7		
Ah	0-15	11.917		0-30	0.105
Bt	15-40	69.583		30-50	0.797
Bw	60-105	0.000		50-90	0.006

Table 5. Saturated hydraulic conductivity of soils of various textures from field measurements (Radcliffe and Rasmussen, 2000)

Soil Texture	Ksat (cm hr-1)	Soil Texture	Ksat (cm hr-1)
Sand	21.00	Clay loam	0.23
Loamy sand	6.11	Sandy clay	0.12
Sandy loam	2.59	Silty clay loam	0.15
Sandy clay loam	0.43	Silty clay	0.09
Loam	1.32	Clay	0.06
Silt loam	0.68		

D. Soil Chemical Properties

1. Soil pH

By definition, soil pH is a measure of the negative logarithm of the hydrogen ion activity in the soil solution (Robarge, 2008). In simple words, it is an indicator of the relative acidity and alkalinity of the soil and is a key soil property that regulates nutrient availability, soil microorganism activity, and many soil chemical processes.

Figure 6 reveals that the ophiolitic soils in the study site have generally near neutral pH (H₂O) ranging between 5.90 and 7.10 with a mean of 6.69. On one hand, values tend to increase with depth suggesting the effect of Ca and Mg from the ultramafic rock on the pH of the soils (Fig. 6). On the other hand, pH values measured in 0.01M CaCl, are 0.70 to 1.70 pH units lower than those determined using water (Fig. 7). As observed, less variation of either pH occurs with soil depth. Our values correspond to those reported from the dark clay ultramafic soils in Palawan (Baillie et al., 2000).

2. Soil Organic C and Total N

Figure 8 presents the depth function of soil organic carbon (SOC) in the different soil profiles in the Basper watershed. As can be seen, SOC contents range from 0.14 to 3.15 percent which can be considered as low (Fig. 8). SOC can be converted into soil organic matter by multiplying with a factor of 1.724.

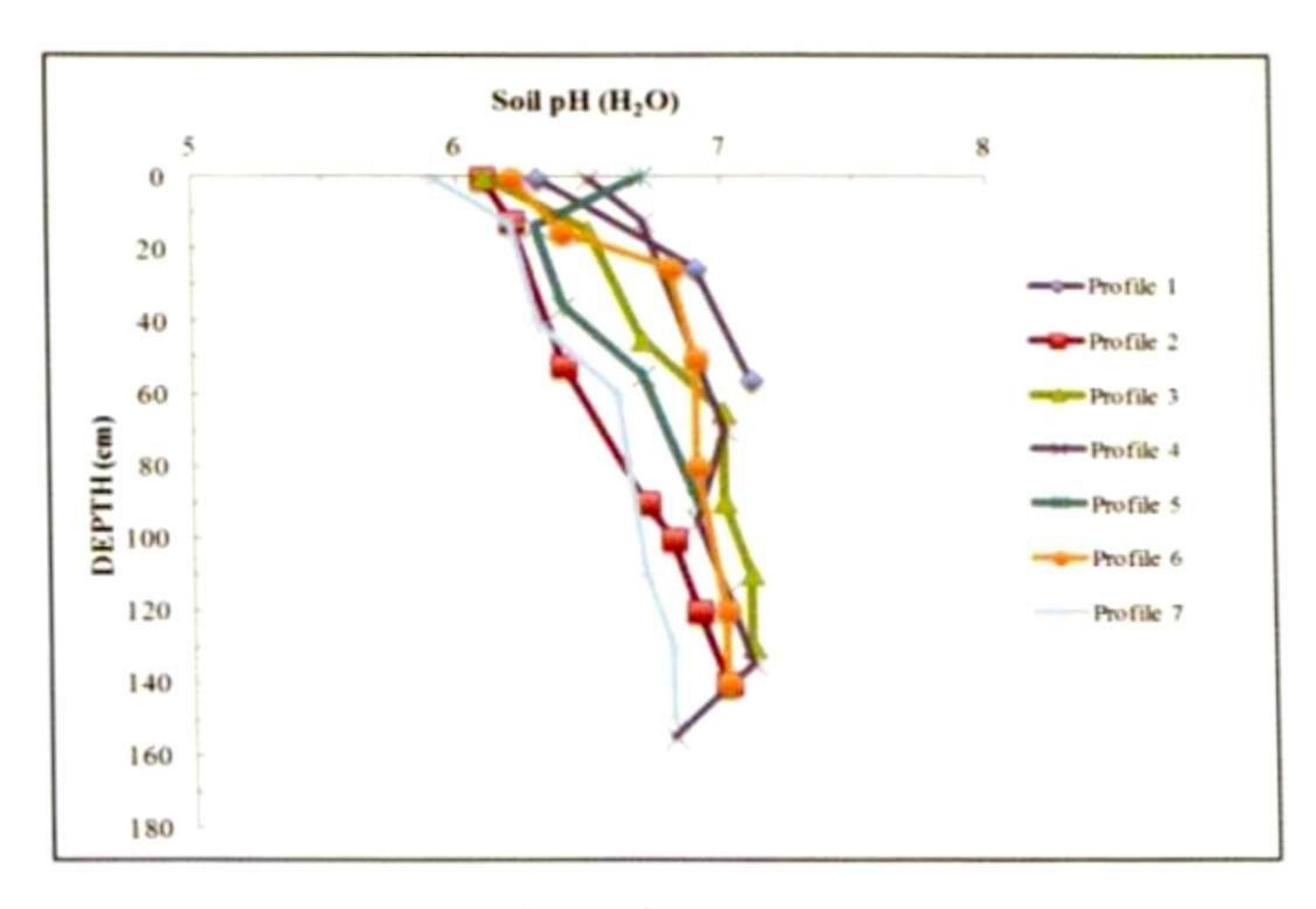


Figure 6. Depth function of pH (1:2.5) of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte (n=45)

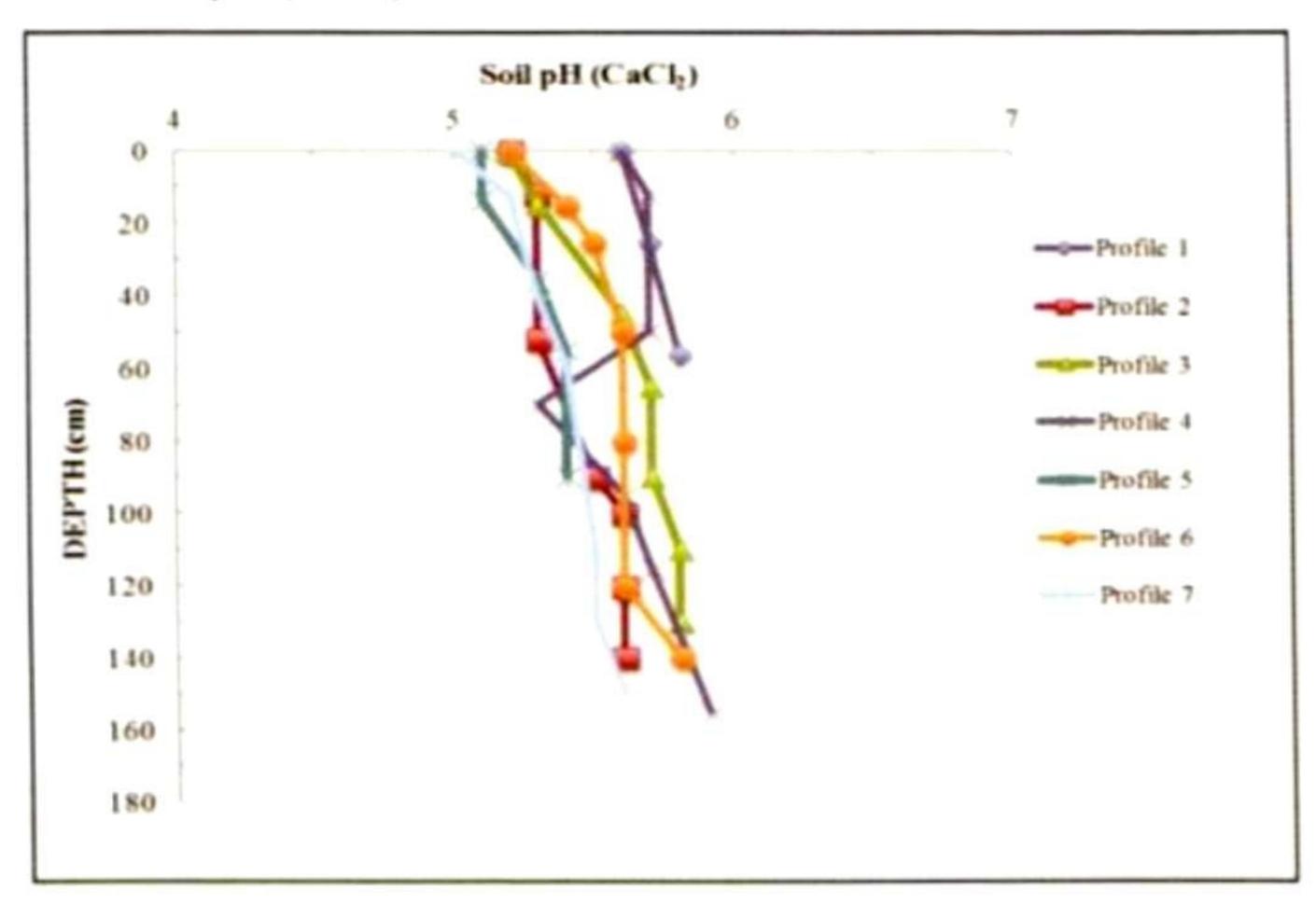


Figure 7. Depth function of pH in 0.01M CaCl(1:2.5) of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte (n=45)

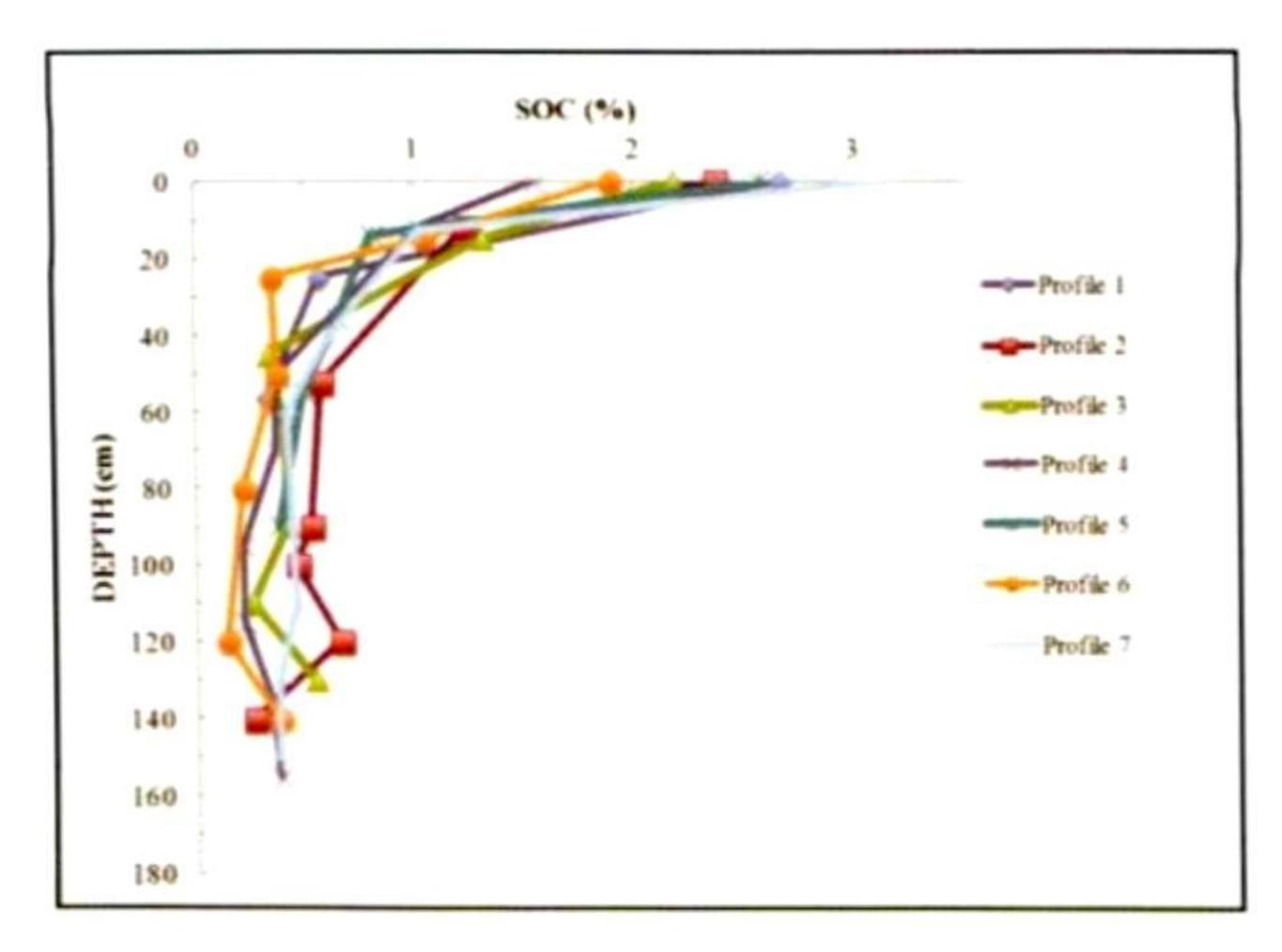


Figure 8. Depth function of SOC (%) of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte (n=45)

As illustrated from the figure, there is a smooth decrease of SOC with depth. Topsoil (A horizon) SOC values from this study are comparable with those from the ophiolitic soils in Palawan (Baillie et al., 2000) while subsoil SOC values are within the range of the serpentinic soils from Taiwan (Hsue et al., 2007). The low SOC contents of the soils studied suggest the influence of vegetation cover and land use. The site experienced shifting cultivation in the past which resulted in soil degradation and the persistence of cogon grass. As is widely known, cogonal areas are regularly subjected to periodic burning which depletes the organic carbon content of the soil.

Due to the fact that soil organic matter is the primary source of soil N, SOC and total N share a similar pattern with soil depth. Total N values range from 0.03 to 0.31 percent with an average of 0.10 percent and are higher, as expected, in the surface horizons (Fig. 10).

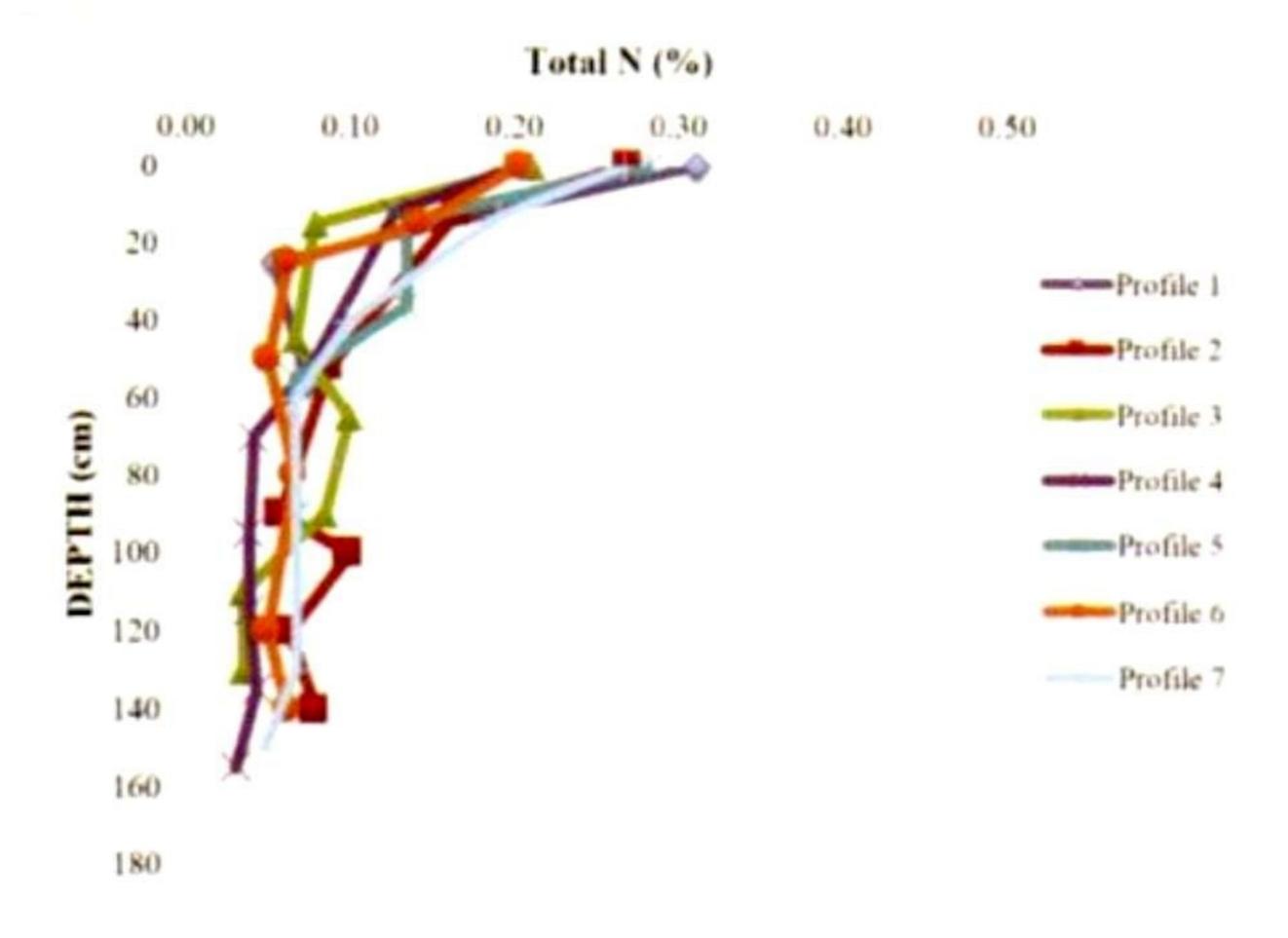


Figure 9. Depth function of Total N (%) of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte (n=45)

3. Available P

Table 6 shows the quantity of available P present in the ultramafic soils located at different slope positions. The solubility of P from the surface soils and subsoils differ between 0.12 to 8.16 mg kg⁻¹ which represents the deficiency of the nutrient at any horizon. This indicates that P is a limiting nutrient for plant growth in the degraded ecosystem but there is moderate P stock in the lower part of the soil profile coming from the parent rock which could be brought into the soil surface by biogeocycling processes. Our results agree with the studies on other ultramafic soils from the Philippines (Baillie et al., 2000; Proctor, 2003) and from the serpentine soils of California (Oze et al., 2004) which revealed low available P.

Table 6. Available P contents of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte

Slope Position	Depth (cm)	Available P (mg kg-1)
Shoulder		
Ap	0-12	0.20
Bw	12-50	0.21
BC_1	50-70	2.56
BC_2	70-95	4.14
CB_1	95-115	3.45
CB ₂	115-135	8.16

Table 6. Continuation.

Slope Position	Depth (cm)	Available P (mg kg ⁻¹)
Shoulder		
CB_3	135-155	7.06
CB_4	155-175	7.93
Upper backslope		
Ap	0-15	0.15
AB	15-25	0.19
Bw	25-50	0.12
BC_1	50-80	0.26
BC_2	80-120	6.57
BC_3	120-140	5.53
BC_4	140-160	4.42
Lower slope		
Ap	0-12	0.20
Bt	12-52	0.13
BC	52-90	0.42
C_1	90-100	1.35
C_2	100-120	0.16
C_3	120-140	0.49
C_4	140-160	0.82

4. Exchangeable bases and acidity

The amounts of the exchangeable basic cations Na, K, Ca, and Mg in the soil control soil reaction and thus influence many soil bio-chemical processes. Except for Na, K, Ca, and Mg are also essential elements for the growth of plants.

The amounts of these cations from the soil profiles investigated are presented in Table 7. Exchangeable Ca and Mg are found in high amounts than Na and K following the sequence: Mg>Ca>Na>K. These results suggest the contribution of the ultramafic ophiolitic rock to the amounts of exchangeable bases in the soil. In particular, the low amounts of exchangeable Na and K can be due to the lack of K-and Na-bearing minerals in the ultramafic parent rock (Garcia, 2009). The present study conforms with other studies done in the ultramafic areas of Palawan which revealed higher levels of Mg than Ca. Briefly, the amounts of exchangeable bases followed the order of Mg>Ca>K (Baillie *et al.*, 2000; Proctor, 2003). The exchangeable acidity (H and Al) of the ophiolitic soils in Basper are also presented (Table 7). The values are generally low (<0.4 cmol_e kg⁻¹) which can be due to the insolubility of Al at near neutral pH condition of the soils.

5. Effective Cation Exchange Capacity (CEC)

CEC, either potential or effective, measures the capacity of the soil to adsorb cations and corresponds to the negative charge of the soil (Bache, 2008). The potential CEC, determined using 1N NH₄OAc at pH 7.0 according to Metson (1956), is particularly important for pedological and soil classification studies as it can provide baseline comparisons of CEC at a specified pH. However, it does not correlate with the fertility status of the soil because the adjusted pH to 7.0 changes the soil reaction of the soil. In contrast, effective CEC determined by summing up the amounts of exchangeable bases plus exchangeable acidity (Na+K+Ca+Mg+H+Al), can effectively evaluate fertility as it gauges the extent to which essential exchangeable

nutrients are supplied at the inherent pH of the soil. Effective CEC of the soils investigated range between 10.61 and 25.81 cmol_c kg with an overall average of 18.96 cmol_c kg ¹ (Table 7). The higher effective CEC in some subsoils compared to the topsoils can be due to the higher exchangeable Mg contributed by the ultramafic parent material at the deeper section of the soil profiles.

6.Clay mineralogy and soil systematics

Due to unavoidable factors, the soil samples sent abroad for clay mineralogical analysis were not analyzed. But a previous soil study done in another portion of the Tacloban Ophiolite Complex in Tanauan, Leyte, located a few kilometers from the Basper study site revealed the abundance of smectite in the clay fraction of the ultramafic soils investigated (Garcia, 2009).

The seven soil profiles can be classified according to the World Reference Base (WRB) (FAO, 1998) and the Soil Taxonomy (ST) (Soil Survey Staff, 1996) as follows: soil profile 1- Gleyic Leptosol (WRB), Lithic Endoaquent (ST); soil profile 2- Haplic Luvisol (WRB), Mollic Hapludalf (ST); soil profiles 3, 4, 5, 6 and 7- Humic Cambisol (WRB), Typic Eutropept (ST).

Table 7.Chemical properties of soils developed from ophiolitic rock in Basper, Tacloban, Northeastern Leyte

Soil Profile	Depth	Exchangeable bases (cmol, kg-1)				Exchangeable acidity (cmol, kg-1)		Effective
Horizon	- (cm)	Na	V.	Ma	Ca			(cmol. lead)
	Toot slope)	INA	N	Mg	Ca	Н	Al	(cmol, kg-1)
	Foot slope) 0 - 25	0.14	0.07	11.44	5.56	0.06	0.11	17.37
Ap C	25 - 56	0.14	0.13	9.05	4.98	0.00	0.05	14.47
R	> 56	0.15	0.00	9.82	5.11	0.11	0.03	15.19
	Lower backsle		0.00	9.02	5.11	0.11	0.10	13.19
		1 /	0.05	10.01	F 27	0.17	0.10	17.70
Ap	0 - 12	0.10	0.05	10.81	5.37	0.16	0.10	16.60
Bt	12 - 52	0.14	0.01	13.70	5.29	0.21	0.05	19.40
BC	52 - 90	0.16	0.01	14.04	4.82	0.16	0.05	19.24
C_1	90 - 100	0.09	0.04	10.43	3.98	0.21	0.41	15.16
C_2	100 - 120	0.13	0.00	14.49	4.95	0.16	0.00	19.72
C_3	120 - 140	0.11	0.03	14.22	4.86	0.26	0.10	19.57
C_4		0.11	0.00	13.99	4.72	0.31	0.21	19.34
Profile 3	Upper backsle	ope)						
Ap	0-15	0.11	0.02	10.15	5.21	0.16	0.16	15.81
Bw	15 - 45	0.25	0.08	15.18	5.59	0.21	0.05	21.36
BC	45 - 65	0.27	0.02	14.18	5.58	0.16	0.16	20.38
C_1	65 - 90	0.13	0.00	12.89	5.44	0.21	0.16	18.83
C_2	90 - 110	0.25	0.12	15.47	5.81	0.16	0.16	21.96
C_3	110 - 130	0.23	0.01	15.84	5.84	0.21	0.16	22.29
C_4	130 - 150	0.25	0.00	16.03	5.82	0.21	0.21	22.52
Profile 4 (Shoulder)							
Ap	0 - 12	0.09	0.03	13.20	5.43	0.06	0.00	18.82
Bw	12 - 50	0.13	0.00	15.47	5.24	0.11	0.05	20.99
BC_1	50 - 70	0.13	0.09	15.44	4.73	0.11	0.05	20.55
BC_2	70 - 95	0.06	0.00	17.66	4.83	0.16	0.05	22.76
CB_1	95 - 115	0.08	0.00	17.82	5.04	0.16	0.11	23.20
CB_2	115 - 135	0.13	0.08	16.24	5.03	0.16	0.11	21.73
CB_3	135 - 155	0.08	0.00	19.96	5.47	0.16	0.05	25.72
CB_4	155 - 175	0.06	0.00	13.82	4.82	0.16	0.10	18.96
Profile 5 (Summit)							
Ap	0 - 14	0.06	0.10	10.37	5.38	0.16	0.16	16.22
Bw	14 - 36	0.08	0.00	11.77	5.32	0.31	0.31	17.79

Table 7. Continuation.

Soil	ъ .	Exchangeable bases (cmol, kg-1)				Exchangeable		Effective
Profile	Depth - (cm) -					acidity (cmol, kg-1)		CEC
Horizon		Na	K	Mg	Ca	Н	Al	(cmol, kg-1)
Profile 5 ((Summit)							
BC	36 - 55	0.15	0.00	12.60	5.40	0.26	0.16	18.56
C_1	55 - 90	0.12	0.00	12.50	5.62	0.26	0.26	18.76
C_2	90 - 110	0.07	0.01	11.21	5.53	0.06	0.16	17.04
Profile 6	(Upper backsle	ope)						
Ap	0 - 15	0.18	0.04	10.68	5.31	0.16	0.10	16.48
AB	15 - 25	0.19	0.00	12.65	5.43	0.11	0.21	18.59
Bw	25 - 50	0.34	0.06	15.17	5.81	0.26	0.32	21.95
BC_1	50 - 80	0.20	0.00	14.72	5.87	0.36	0.37	21.52
BC_2	80 - 120	0.16	0.03	11.64	5.67	0.31	0.63	18.44
BC_3	120 - 140	0.04	0.00	11.77	5.51	0.25	0.16	17.74
BC_4	140 - 160	0.12	0.00	11.25	5.48	0.16	0.21	17.21
Profile 7	(Lower backsl	ope)						
Ah	0 - 13	0.15	0.05	9.60	5.11	0.21	0.32	15.43
AB	13 - 40	0.22	0.01	13.15	4.96	0.26	0.16	18.76
Bw	40 - 60	0.21	0.00	14.89	4.95	0.26	0.16	20.46
CB_1	60 - 110	0.33	0.09	13.59	4.90	0.36	0.21	19.47
CB_2	110 - 130	0.23	0.00	14.88	5.26	0.26	0.16	20.79
CB_3	130 - 150	0.22	0.00	13.75	5.12	0.21	0.16	19.46
C	150 - 170	0.15	0.00	11.40	4.87	0.26	0.10	16.78

CONCLUSION

The results of the study support the following conclusions:

- The ophiolitic soils in the Basper watershed range from poorly to moderately developed and from shallow particularly in the lower slopes and summit positions to deep soils in the lower backslope positions. The soil in the footslope position was the least developed and shallowest.
- 2. The soils in the study site have lower bulk density values on their surface horizons than in their subsurface horizons implying higher porosity and good aeration in the former than in the latter. Also, Ksat values in the surface horizons were generally higher than in the subsurface horizons indicating good water movement on the surface but slow movement in the lower part of the soil profile.
- In terms of fertility, the ophiolitic soils can support a variety of vegetation from grasses, shrubs to trees although they have low available P, total N, exchangeable K, and CEC. Despite these, soil pH is moderately acidic to neutral and exchangeable Ca and Mg are high.
- The exchangeable Mg contents of the soils studied were much higher than the exchangeable Ca contents reflecting the ultramafic nature of the ophiolitic parent material.
- The characteristics of the ophiolitic soils showed clear influence of their physiographic position and parent material.

ACKNOWLEDGEMENT

This paper is based on the MS thesis of the first author (CMOQ). She earnestly thanks her adviser, Dr. Victor B. Asio, for the supervision during the months of fieldwork up until putting this study into print. She is, in the same manner, thankful to the Department of Science and Technology- Science Education Institute (DOST-SEI) for the Accelerated

Science and Technology Human Resource Development Project(ASTHRDP)-National Science Consortium (NSC) scholarship. The authors are also grateful to Prof. L.A. Bruijnzeel for inviting CMOQ to join his Soil Hydrology Team conducting research in the Basper Watershed. Likewise, thanks are due to Ms. Jun Zhang, a PhD student of Prof. Bruijnzeel, for taking the ksat measurements included in the paper. Finally, Mr. Roger Tripoli, the SRA of the Project, is sincerely acknowledged for his assistance during the fieldwork.

REFERENCES

- AMOOZEGAR, A. 1989. A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. *Soil Sci. Soc. Am. J.* 53: 1356-1361.
- BACHE, B. W. 2008. Base Saturation. *In*: Encyclopedia of Soil Science. (W. Chesword ed). Springer, Dordrecht, The Netherlands. pp. 52-54.
- BAILLIE, I. C., P. M. EVANGELISTA and N. B. INCIONG. 2000. Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. *Catena* 39: 283-299.
- DILEK, Y. 2003. Ophiolite concept and its evolution. Special Paper of the Geological Society of America. Boulder, Colorado.
- DIMALANTA, C. B., L. O. SUERTE, G. P. YUMUL, R. A. TAMAYO and E. G. L. RAMOS. 2006. A cretaceous supra-subduction oceanic basin source for Central Philippine ophiolitic basement complex: Geological and geophysical constraints. Geosciences 10 (3): 305-320.
- D'AMICO, M.E. 2009. Soil ecology and pedogenesis on ophiolitic materials in the western Alps (Mont Avic Natural Park, North-western Italy): soil properties an their relationships with substrate, vegetation and biological activity. Dissertation, Universita degli Studi di Milano Bicocca, Italy.
- EIJKELKAMP. 2013. Laboratory permeameters. Operating instructions. Giesbeek, the Netherlands.
- FOOD AND AGRICULTURE ORGANIZATION (FAO). 1996. World Reference Base for Soil Resources. World Soil Resources Report 84, FAO at the United Nations, Rome.
- FOTH, H. D. 1990. Fundamentals of Soil Science. 8th edition. John and Willey and Sons, USA. 360 pp.
- GARCIA, G.A.A. 2009. Mineralogy of a soil toposequence on serpentinite on Leyte island in the Philippines. MSc Thesis, Ghent University, Belgium.
- HAVLIN, J.L., J.D. BEATON, S.L. TISDALE and W.R. NELSON. 1999. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 6th Edition. Prentice Hall. Upper Saddle River, New Jersey.
- HSEU, Z. Y., H. TSAI, H. C. HSI and Y. C. CHEN. 2007. Weathering sequences of clay minerals in soils along a serpentinitic toposequence. *Clays and Clay Minerals* 55 (4): 389-401.
- HUANG, W. T. H. 1962. Petrology. McGraw-Hill Book Company. USA.
- INTERNATIONAL SOIL REFERENCE AND INFORMATION CENTER (ISRIC). 1995. Procedures for Soil Analysis. (L.P. Van Reuwijk, editor). Wageningen, The Netherlands.
- JAHN, R., H.P. BLUME, V.B. ASIO, O. SPAARGAREN and P. SCHAD. 2006. Guidelines for soil description. 4th edition. FAO of the United Nations, Rome.
- KUTILEK, M. AND D.R. NIELSEN. 1994. Soil Hydrology. Geoecology Textbook. Catena Verlag, Cremlingen.
- LANDON, J.R. 1991. Booker Tropical Soil Manual. Longman Scientific and Technical, Essex, England. 474 pp.

METSON, A.J. 1956. Methods of chemical analysis for soil survey samples. New Zealand Soil Bureau Bulletin No. 12.

- OZE, C., S. FENDORF, D.K. BIRD and R.G. COLEMAN. 2004. Chromium geochemistry of serpentine soils. *Int. Geol. Rev.* 46:97–126.
- PROCTOR, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perpectives in Plant Ecology, Evolution and Systematics. Urban & Fischer Verlag. 6 (1-2): 105-124.
- ROBARGE, W. P. 2008. Acidity. *In*: Encyclopedia of Soil Science. (W. Chesword ed). Springer, Dordrecht, The Netherlands. pp. 10.
- SCHLICHTING, E., H.P. BLUME and K. STAHR. 1995. Bodenkundliche Praktikum (Soil Science Practicum). (2nd ed.) Blackwell, Berlin.
- SOIL SURVEY STAFF. 1996. Keys to Soil Taxonomy. (7th ed.). UDSA-NRCS, Washington DC.
- THOMAS, G.W. 1982. Exchangeable cations. *In*: A.L PAGE, Editor. Methods of soil analysis. Part 2. Chemical and microbiological properties (2nd ed.). Agron. Soc. Amer., Inc. and Soil Sci. Amer. Inc., Madison, Wisconsin. 159–165 pp.
- USDA-NRCS, 1996. Soil survey laboratory methods manual. Soil survey investigation report No. 42. Version 3. USDA-Natural Resources Conservation Service, NSSC, Lincoln, NE.
- WYLLIE, P. J. 1969. The origin of ultramafic and ultrabasic rocks. *Tectonophysics* 7(5-6): 437-455.