Response of *in vitro* Cultured Palm Oil Seedling Under Saline Condition to Elevated Carbon Dioxide and Photosynthetic Photon Flux Density

Pet Roey Pascual¹, Krienkai Mosaleeyanon², Kanokwan Romyanon² and Chalermpol Kirdmanee²

¹Cebu Technological University (CTU) – Barili Campus, Barili, Cebu, Philippines, ²National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 133 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120. Thailand

ABSTRACT

Salt stress elicits various physiological and growth responses of oil palm. A laboratory experiment was conducted to determine the responses of oil palms cultured in vitro under varying salinity levels (0, 85.5, 171.11, 342.21 and 684.43 mM NaCl) to elevated CO_2 (1000 µmol CO_2 /mol) and PPFD (100±5 µmol m⁻² s⁻¹) in terms of growth characteristics, pigment contents and photosynthetic abilities. After 14 days of culture, net photosynthetic rate (µmol CO₂ m⁻² s⁻¹) of oil palms across varying salinity levels was 5.33 times higher than those cultured under ambient CO₂ (380±100 μmol CO₂/mol) and PPFD (50±5 μmol m⁻² s⁻¹). At increased net photosynthetic rate (elevated CO2 and PPFD), despite having no significant difference in pigment contents (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid) between different CO₂ and PPFD levels, dry weight and percent dry matter were 0.26 and 0.11 times higher, respectively, as compared to those cultured under ambient CO₂ and PPFD. In the same elevated CO₂ and PPFD level, across all salinity levels, stomatal conductance was 0.30 times lower than those cultured under ambient CO₂ and PPFD. At reduced stomatal conductance (elevated CO₂ and PPFD), transpiration rate was also reduced by 0.30 times. Thus with increased net photosynthetic rate and reduced transpiration rate, water use efficiency was increased by 7.22 times, across all salinity levels, than those cultured at ambient CO2 and PPFD. These were considered essential for NaCl produces iso-osmotic stress.

Correspondence: P. R. L. Pascual. Address: Cebu Technological University (CTU) – Barili Campus, Barili, Cebu, Philippines. E-mail:petroey262301@yahoo.com.

DOI: 10.32945/atr3413.2012

INTRODUCTION

It is projected that the demand for oil will increase as a result of future increase in the world per capita consumption of oils and fats (Oil World, 2004). Palm oil can contribute significantly to meet this demand in view of its high yield (4-5t/ha/year) (Barison and Ma, 2000); almost three times the yield of coconut and more than ten times that of soybean (Rajanaidu and Jalani, 1994). Expansion of oil palm plantations will mean encroachment of forested lands which has an adverse effect on the environment. Hence, areas other than forested land such as saline areas should be considered for oil palm production. However, since oil palms are known to be susceptible to salinity, breeding for salt tolerance in oil palm is needed to be able to fully utilize the vast saline areas for expansion of oil palm plantations.

Salinity is one of the major factors affecting agricultural productivity worldwide. In Asia alone, with an estimated area of 21.5 million hectares, 12 million hectares of which are considered saline. Salt negatively affects plants by inhibiting water absorption due to increased osmotic pressure around the roots and death of cells or tissues due to abundance of Na⁺ (Munns and Tester, 2008). Moreover, physiological parameters have been developed as effective indices for tolerance screening in plant breeding programs (Parida and Das, 2005; Ashraf and Foolad, 2007). Jalani *et al.* (1997) considered tolerance of oil palm to salinity along with other abiotic stresses such as water-deficit, extreme temperature, mineral deficiency, heavy metal toxicity and ultraviolet irradiation as a fruitful topic in its improvement.

Thus, this study aimed to determine the responses of oil palm seedlings cultured in vitro under varying salinity levels to increased CO_2 and PPFD level in terms of growth characteristics, pigment contents and photosynthetic abilities. These issues were considered as a profitable venture for the purpose of salt tolerance screening using physiological parameters as quicker and simpler index in oil palm breeding programs such as high net photosynthesis in plant translating to better performance under saline condition.

MATERIALS AND METHODS

Plant materials and culture condition

Two-month-old oil palm plantlets of the variety Tenera derived from zygotic embryos of approximately 5 cm height with 1 to 2 opened leaves cultured in ½ strength Murashige and Skoog (MS) medium supplemented with 3% sucrose and 0.25% Phytagel® (Pronadisa, Hispanlab, S.A. Madrid) were selected and grown with roots removed in glass vessel under photoautotrophic condition supplemented with 50 ml ½ strength MS liquid medium (without agar and sugar) supported by vermiculite (Fig. 1 a and b)

The pH of the media was adjusted to 5.7 to 5.8 before autoclaving. Except for the differences in treatments (CO_2 concentration and PPFD), oil palm seedlings cultured *in vitro* in plant growth chamber (Eyela) were subjected to the same $28\pm2^{\circ}C/25\pm2^{\circ}C$ temperature shift(light/dark), 60±5% relative humidity (RH) and 16 h d⁻¹ photoperiod as provided by 40W white fluorescent tube (Fig. 1 c). Air exchanges between the chamber environment and the glass vessels were facilitated with two air perforations on its cover and placed with gas-permeable microporous polyethylene film (0.22 μ m pore size) over the holes.

Figure 1. Two-months-old tenera plantlets derived from zygotic embryos cultured in ½ strength MS medium (A) sub-cultured with the roots removed in glass vessel under photoautotrophic condition supported by vermiculite (B) and placed under plant growth chamber (C).

Experimental design and treatments

A 2×5 factorial experiment arranged in Completely Randomized Design (CRD) with five replications at three plantlets per replication was used in this study. Different carbon dioxide $(380\pm100~\text{and}~1000\pm100~\mu\text{mol}~\text{CO}_2/\text{mol})$ concentrations along with light intensities $(50\pm5~\text{and}~100\pm5~\mu\text{mol}~\text{m}^{-2}~\text{s}^{-1})$, and with varying levels of salinity (0,85.5,171.11,342.21~and~684.43~mM~NaCl) were tested (Table 1). The zygotic embryo-derived plantlets of oil palm were exposed to the different treatment conditions for a period of two (2) weeks before data were gathered. The following were the treatments of the study

Factor A - CO₂ and PPFD Level

- A Ambient CO_2 and PPFD Level (380±100 µmol CO_2 /mol and 50±5 µmol m^{-2} s⁻¹)
- E Elevated CO_2 and PPFD Level (1000±100 μ mol CO_2 /mol and 100±5 μ mol m^{-2} s^{-1})

Factor B – Salinity Level

T1 - 0.00 mM NaCl

T2-85.50 mM NaCl

T3 - 171.11 mM NaCl

T4 - 342.21 mM NaCl

T5 - 684.43 mM NaCl

Data gathered

Physiological responses

Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TC) and carotenoid (C_{x+C}) were measured following the methods of Shabala *et al.* (1998) and Lichtenthaler (1987), respectively. One hundred milligram of leaf tissue were collected and placed into 25 ml glass vial, added with 10 ml of 95.5% acetone and blended with homogenizer. The Chla, Chlb, and C_{x+C} were measured with UV – visible spectrometer. Solution of 95.5% acetone was used as blank.

The net photosynthetic rate (Pn), transpiration rate (E) and stomatal conductance (gs) of oil palm plantlets were measured using an Infra-Red Gas Analyser (IRGA). The E and gs were measured by continuously monitoring the $\rm H_2O$ of the air entering and exiting in the IRGA headspace chamber. Water use efficiency (WUE) of plantlets was calculated by ratio of $\rm P_n$ and E (Cha-um *et al.*, 2007).

Growth characteristics

Shoot fresh and dry weights of oil palm seedlings were measured at the end of the experiment. For dry weight, oil palm seedlings were dried at 80°C in a hot-air oven for 2 days, and were incubated in desiccators for 1 day before the measurement of dry weight. Dry matter data are essential as dry matter production generally increases as the plant grows and develops making it a very reliable index of plant development compared to other parameters which are greatly dependent on moisture content. Percent dry matter was calculated by ratio of dry weight and fresh weight multiplied by 100. This is also important since weight of plantlets varies even before treatment application. On the other hand, root parameters were not gathered anymore because the study focused only on determining the potential of using Pn as index for salinity tolerance.

Data Analysis

Data were statistically analyzed through ANOVA for CRD. Comparisons among means were done using DMRT to determine the specific significant differences among treatment means.

RESULTS

The combined effect of CO_2 , PPFD and salinity levels on net photosynthetic rate (µmol CO_2 m⁻² s⁻¹) is shown in Table 1. Oil Palms cultured under elevated CO_2 (1000±100 µmol CO_2 /mol) and PPFD (100±5 µmol m⁻² s⁻¹) and exposed to a salinity level of 85.50 mM NaCl (T1E) exhibited the highest net phosynthetic rate, but was not significantly different to those exposed to the same elevated CO_2 and PPFD level that were untreated with NaCl (T0E). Net phosynthetic rate in T1E was seven times higher than those seedlings cultured under ambient CO_2 (380±100)

μmol CO_2/mol) and PPFD (50±5 μmol m⁻² s⁻¹) level without NaCl (T0A). At salinity level above 85.50 mM NaCl, however, Pn of oil palm exposed to elevated CO_2 and PPFD level was not anymore statistically different to those grown under ambient CO_2 and PPFD level and exposed to saline condition up to 342.21 mM NaCl. Several authors have reported that an increase in PPFD enhanced net photosynthetic rate of *in vitro* plantlets in plant species such as *Eucalyptus* (Kirdmanee *et al.*, 1995), melon (*Cucumis melo* L.) (Adelberge *et al.*, 1999) and coffee (*Coffea arabusta*) (Nguyen *et al.*, 2000). However, none has been reported on plants exposed to saline condition.

Table 1. Net photosynthetic rate of oil palms after 14 days of culture under controlled environments as affected by different CO_2 , PPFD and salinity levels. Different letters indicate significant differences between the treatments at $P \le 0.05$ determined by Duncan's Multiple Range

CO ₂ and		Salinity Level (mM NaCl)				
PPFD Levels	T0	T1	T2	Т3	T4	_
A	0.00027 ^{cd}	$0.00084^{\rm cd}$	- 0.00386cd	- 0.00440cd	- 0.00998d	-0.00343b
Е	0.02191^{ab}	0.02699a	$0.00927^{\rm bc}$	0.00811^{bc}	$0.00005^{\rm cd}$	-0.00343b
Mean	0.01109^{a}	0.01391a	0.00270^{ab}	0.00185^{ab}	-0.00049b	

The increase in net photosynthetic rate, despite having no significant difference in pigment contents (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid in µg g⁻¹FW) between ambient and elevated carbon dioxide and PPFD level (Table 2), mean dry weight (mg/plant) and percent dry matter were increased by 0.26 and 0.11 times at elevated CO₂ (1000 \pm 100 μ mol CO₂/mol) and PPFD (100 \pm 5 μ mol m⁻² s⁻¹), respectively (Table 3). Plantlets grown under elevated CO₂ (1000±100 μmol CO₂/mol) and PPFD (100±5 umol m⁻² s⁻¹) levels that were untreated with NaCl (T0E) had the heaviest dry weight and percent dry matter which was 0.76 and 0.37 times higher, respectively, than those oil palms gown under ambient condition that were with NaCl (TOA). untreated (PPF) and CO₂ concentration are key photosynthetic photon flux environmental factors determining plant growth. In St. Johns wort, increasing PPF from 100 to 300 µmol m⁻² s⁻¹ and increasing CO₂ concentration from 500 to 1500 µmol mol⁻¹ significantly increased net photosynthetic rate that resulted to increase in fresh and dry mass (Mosaleeyanon et al., 2005). However, there were no reports on plants subjected to salinity stress.

Table 2. Pigment contents (chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid) of oil palms after 14 days of culture under controlled environments as affected by different CO_2 , PPFD and salinity levels. Different letters indicate significant differences between the treatments at $P \le 0.05$ determined by Duncan's Multiple Range Test.

1 0	Chla	Chlb	TC	C_{x+c}
Treatment	(μg g ⁻¹ FW)			
Ambient CO ₂ and PPFD				
0.00 mM NaCl	11.85 ^{ab}	4.71 ^{ab}	16.56 ^{ab}	3.71 ^{ab}
85.50 mM NaCl	13.67 ^a	5.52 ^a	19.20 ^a	4.43 ^a
171.11 mM NaCl	10.76^{ab}	4.57 ^{ab}	15.34 ^{ab}	3.36^{ab}
342.21 mM NaCl	8.34 ^{bc}	3.60 ^{bcd}	11.94 ^{bc}	2.85 ^{bc}
684.43 mM NaCl	5.35 ^{cd}	2.59^{cd}	7.95 ^{cd}	1.81 ^{cd}
Mean	9.99	4.19	14.19	3.23
Elevated CO ₂ and PPFD				
0.00 mM NaCl	10.95 ^{ab}	4.27 ^{abc}	15.22 ^{ab}	3.85 ^{ab}
85.50 mM NaCl	10.43 ^{ab}	4.29 ^{abc}	14.72 ^{ab}	3.67 ^{ab}
171.11 mM NaCl	10.43 ^{ab}	4.39^{ab}	14.82 ^{ab}	3.92^{ab}
342.21 mM NaCl	7.85 ^{bc}	3.53 ^{bcd}	11.39 ^{abc}	2.97 ^{abc}
684.43 mM NaCl	3.79 ^d	2.03^{d}	5.82 ^d	1.35 ^d
Mean	8.69	3.70	12.39	3.15

Table 3. Growth characteristics (fresh weight, dry weight and percent dry matter) of oil palms after 14 days of culture under controlled environments as affected by different CO_2 , PPFD and salinity levels. Different letters indicate significant differences between the treatments at $P \leq 0.05$ determined by Duncan's Multiple Range Test

	FW	DW	% DM
Treatment	(mg/plant)	(mg/plant)	(%/plant)
Ambient CO ₂ and PPFD			
0.00 mM NaCl	117.64 ^{abc}	16.53 ^{bc}	13.98°
85.50 mM NaCl	124.20 ^{abc}	21.34 ^{abc}	16.75 ^{abc}
171.11 mM NaCl	111.35 ^{bc}	16.13 ^{bc}	16.12 ^{abc}
342.21 mM NaCl	104.38°	15.22 ^{bc}	15.27 ^{bc}
684.43 mM NaCl	91.66°	13.53°	14.48 ^{bc}
Mean	109.85	16.55 ^b	15.32 ^b
Elevated CO ₂ and PPFD			
0.00 mM NaCl	149.09 ^a	29.15 ^a	19.27 ^a
85.50 mM NaCl	146.75 ^{ab}	25.57 ^{ab}	16.83 ^{abc}
171.11 mM NaCl	112.51 ^{abc}	20.37 ^{abc}	17.97 ^{ab}
342.21 mM NaCl	110.30 ^{bc}	18.36 ^{bc}	16.35 ^{abc}
684.43 mM NaCl	97.01 ^d	14.78°	14.83 ^{bc}
Mean	123.13	21.65 ^a	17.05 ^a

In the same elevated CO_2 and PPFD level, across all salinity levels, stomatal conductance (µmol m⁻² s 1) of oil palm seedlings was 0.30 lower than those cultured under ambient carbon dioxide and PPFD (Fig. 2). Since

salinity induces iso-osmotic stress, a very common mechanism for plant to cope with further loss of water is through closing of stomata. With reduced stomatal conductance (elevated carbon dioxide and PPFD), transpiration rate (mmol $\rm H_2O~m^{-2}~s^{-1}$) was also reduced by 0.30 times (Table 4).

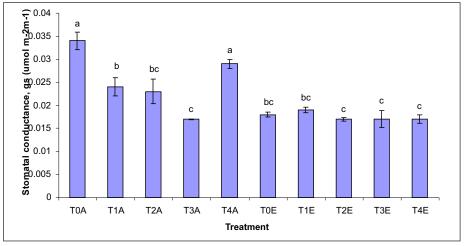


Figure 2. Stomatal conductance of oil palms after 14 days of culture under controlled environments as affected by different CO_2 , PPFD and salinity levels. Different letters indicate significant differences between the treatments at $P \leq 0.05$ determined by Duncan's Multiple Range Test

Table 4. Transpiration rate of oil palms after 14 days of culture under controlled environments as affected by different CO_2 , PPFD and salinity levels. Different letters indicate significant differences between the treatments at $P \le 0.05$ determined by Duncan's Multiple Range Test

	Е	WUE
Treatment	$(\text{mmol H}_2\text{O m}^{-2}\text{ s}^{-1})$	(Pn/E)
Ambient CO ₂ and PPFD		
0.00 mM NaCl	0.88537^{a}	$0.00030^{\rm b}$
85.50 mM NaCl	0.62821 ^b	0.00133^{b}
171.11 mM NaCl	$0.60743^{\rm bc}$	-0.00635 ^b
342.21 mM NaCl	$0.46688^{\rm cd}$	-0.00942 ^b
684.43 mM NaCl	0.76448^{a}	-0.01305 ^b
Mean	0.67047^{b}	-0.00544 ^b
Elevated CO ₂ and PPFD		
0.00 mM NaCl	0.48423 ^{cd}	0.04524^{a}
85.50 mM NaCl	0.48735 ^{cd}	0.05538^{a}
171.11 mM NaCl	0.44871 ^d	0.02065^{ab}
342.21 mM NaCl	$0.46000^{\rm d}$	0.01763 ^{ab}
684.43 mM NaCl	0.45623 ^d	0.00011 ^b
Mean	0.46730^{a}	0.02780^{a}

Stomatal conductance (T0A) and transpiration rate (T4A) peaks were significantly higher compared to the rest of the treatments. Thus with increased net photosynthetic rate and reduced transpiration rate, water use efficiency (Pn/E) was 7.22 times higher than those cultured at ambient carbon dioxide and PPFD, across all salinity levels.

Moreover, it is interesting to point out effect of elevated $\mathrm{CO_2}$ and PPFD on stomatal conductance and transpiration rate as iso-osmotic stress derived from NaCl induced toxic damages especially in pigment degradation (de Herralde *et al.*, 1998; Lutts *et al.*, 2004; Neto *et al.*, 2004; Tonon *et al.*, 2004). In such case, minimal loss of water due to transpiration through the stomata is very important. With the increased net photosynthetic rate and reduced transpiration rate, water use efficiency (Pn/E) of seedlings was increased by 7.22 times higher than seedlings cultured at ambient carbon dioxide and PPFD. Moreover, the up-surge of stomatal conductance transpiration at 684.43 mM NaCl at ambient carbon dioxide and PPFD may have been attributed to epidermal cell death causing stomata to lock-open.

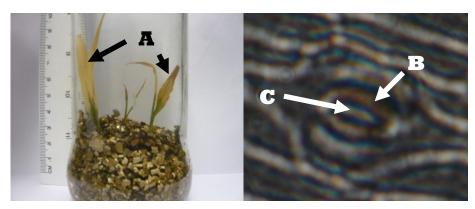


Figure 2. Severe chlorophyll degradation (A), due to high level of NaCl (684.43 mM), leading to damage or death of cells (B) thereby causing stomata to lock-open (C) in both ambient CO₂ and PPFD.

Prats et al. (2006) reported that in barley, stomata locked open as a consequence of epidermal cell death especially at the proximity of the dead cells. In general, the ionic toxicity of salt stress plays a major role in membrane injury, organelle damage and pigment degradation prior to cell death. This is well documented in many plant species such as Centaurea rugusina (Radic' et al., 2005; Radic' et al., 2006), Fraxinus angustifolia

(Tonon et al., 2004), Populus balsamifera (Chen et al., 2002), Asteriscus maritimus (Rodriguez et al., 2005), Lupinus consentinii (Legocka and Kluk, 2005), Vigna sinensis (Costa et al., 2007) and Tamarindus indica (El-Siddig et al., 2004).

CONCLUSION

Elevated carbon dioxide ($380\pm100~\mu\text{mol}~\text{CO}_2/\text{mol}$) and PPFD ($50\pm5~\mu\text{mol}~\text{m}^{-2}~\text{s}^{-1}$) increased the net phosynthetic rate ($\mu\text{mol}~\text{CO}_2~\text{m}^{-2}~\text{s}^{-1}$) of oil palms under saline condition. With increased net photosynthetic rate, plant dry weight and percent dry matter were subsequently increased. The same increase in net photosynthetic rate is essential to affect an increase in water use efficiency. These findings show the possibility of using net photosynthetic rate as a physiological criterion for salinity tolerance screening in oil palm breeding programs e.g. higher Pn translating to better performance of oil palm under saline condition.

ACKNOWLEDGEMENT

The authors would like to express their utmost gratitude to the Interventional Cooperation Division (ICD) of the National Center for Genetic Engineering and Biotechnology (BIOTEC) thru their Human Resource Development Program in Biotechnology for Asia Pacific (HRDP) and Cebu Technological University - Barili Campus for making this experiment possible.

REFERENCES

- ADELBERGE J., K. FUJUWARA, C. KIRDMANEE, and T. KOZAI. 1999. Photoautotrophic shoot and root development for tripod melon. *Plant Cell, Tissue and Organ Culture* **57**:97-104.
- ASHRAF M. and M.R. FOOLAD. 2007. Role of glycine betaine and proline in improving plant abiotic stress resistance. *Environmental and Experimental Botany* **59**:206-216.
- BARISON Y. and A.N. MA. 2000. Malaysian palm oil industry: moving towards the future. *Palm Oil Development* **32**:1-9.

- CHA-UM S., K. SUPAIBULWATANA, and C. KIRDMANEE. 2007. Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerant and sal-sensitive lines of indica rice (*Oryza sativa* L. ssp. *indica*) in response to salt stress. *Journal of Agronomy and Crops Science* **193**:157-166.
- CHEN S., L. LI, T. WANG, S. WANG, A. POLLE, and A. HÜTTERMANN. 2002. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. *Journal of Plant Growth Regulation* **21**:224-233.
- COSTA J.H., Y. JOLIVET, M.P. HASENFRATZ-SAUDER, E.G. ORELLANO, M.G.S. LIMA, P. DIZENGREMEL, and D.F. DE MELO. 2007. Alternative oxidase regulation in roots of *Vigna unguiculata* cultivars differing in drought/salttolerance. Journal of Plant Physiology **164**:718-727.
- DE HERRALDE F., C. BIEL, R. SAVÉ, M. A. MORALES, A. TORRECILLAS, J.J. ALARC'ON, and M.J. SĀNCHEZ-BLANCO. 1998. Effect of water and salt stresses on the growth, gas exchange and water relations in *Argyranthemum coronopifolium* plants. *Plant Science* **139**:9-17.
- EL-SIDDIG K., S. INANAGA, A.M. ALI, J. GEBAUER, and G. EBERT. 2004. Response of *Tamarindus indica* L. to iso-osmotic solutions of NaCl and PEG during germination. *Journal of Applied Botany* **78**:1-4.
- JALANI B.S., S.C. CHEAH, N. RAJANAIDU and A. DARUS. 1997. Improvement of palm oil through breeding and biotechnology. *Journal of the American Oil Chemists' Society* **74**:1451-1455.
- KIRDMANEE C., Y. KITAYA and T. KOZAI. 1995. Effects of CO₂ enrichment and supporting material *in vitro* on photoautotrophic growth of *Eucalyptus* plantlets *in vitro* and *ex vitro*. *In Vitro Cellular and Developmental Biology* **31**:144-149.
- LEGOCKA J. and A. KLUK. 2005. Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in *Lipinus luteus* seedlings. *Journal of Plant Physiology* **162**:662-668.

- LICHTENTHALER H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. *Methods in Enzymology* **148**:350-380.
- LUTTS S., M. ALMANSOURI, and J.M. KINET. 2004. Salinity and water stress have contrasting effects on relationship between growth and cell variability during and after stress exposure in durum wheat callus. *Plant Science* **167**:9-18.
- MOSALEEYANON K., S.M.A. ZOBAYED, F. AFREEN, and T. KOZAI. 2005. Relationships between net photosynthetic rate and secondary metabolite contents in St. John's wort. *Plant Science* **169**: 523-531.
- NETO N.B., S.M. SATURNINO, D.C. BOMFIM, and C.C. CASTŎDIO. 2004. Water stress induced by manitol and sodium chloride in soybean cultivars. *Brazilian Archives of Biology and Technology* **47**:521-529.
- NGUYEN Q.T., T. KOZAI, and U.V. NGUYEN. 2000. Effects of sucrose concentration, supporting materials and number of air exchanges on the vessel on the growth of *in vitro* coffee plantlets. *Plant Cell, Tissue and Organ Culture* **58**:51-57.
- OIL WORLD. 2004. Oil World Annual. ISTA Mielke, Hamburg.
- PARIDA A.K., and A.B. DAS. 2005. Salt tolerance and salinity effects on plants: a review. *Ecotoxicology and Environmental Safety* **60**:324-349.
- PRATS E., A.P. GAY, L.A. MURR, B.J. THOMAS, and T.L.W. CARVER. 2006. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by *Blumeria graminis. Journal of Experimental Botany* **57(10)**:2211-2226.
- RADIĆ S., M. PROLIĆ, and B. PEVALEK-KOZLINA. 2005. Cytogenetic effects of osmotic stress on the root meristem cells of *Centaurea ragisina* L. *Environmental and Experimental Botany* **54**:213-218.

- RADIĆ S., M. RADIĆ-STOJKOVIĆ, and B. PEVALEK-KOZLINA. 2006. Influence of NaCl and mannitol on peroxidise activity and lipid peroidation in *Centaurea ragisina* L. roots and shoots. *Journal of Plant Physiology* **163**:1284-1292.
- RAJANAIDU N., and B.S. JALANI. 1994. Prospects for breeding for kernels in oil palm (*Elaeis guineensis*). *Planter* **70**:309-318.
- RODRIGUEZ P., A. TORRECILLAS, M.A. MORALES, M.F., ORTUNO, and M.J., SANCHEZ-BLANCO. 2005. Effects of NaCl salinity and water stress on growth and leaf water relations of *Asteriscus maritimus* plants. *Environmental and Experimental Botany* **53**:113-123.
- SHABALA S.N., S.I. SHABALA, A.I. MARTYNENKO, O. BABOURINA, and I.A. NEWMAN. 1998. Salinity effects on bioelectric activity, growth, Na⁺ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. *Australian Journal of Plant Physiology* **25**:609-616.
- TONON G., C. KEVERS, O. FAIVRE-RAMPANT, M. GRAZIANI, and T. GASPAR. 2004. Effects of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic *Fraxinus angustifolia* callus. *Journal of Plant Physiology* **161**:701-708.