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ABSTRACT

. f T . Received: 11 April 2024
Calamansi or calamondin, also known as the Philippine lime (x Revised: 11 July 2025

Citrofortunella macrocarpa), is a vitamin C-rich citrus fruit with a = accepted: 2 August 2025
growing demand in the food industry. However, calamansi fruit is  Published: 12 December 2025
highly perishable and has limited shelf life. In this study, the quality

and shelf life of calamansi fruit was evaluated under two different

storage conditions: a CoolBot-equipped cold room (12.78°C+5.04°C; @ @@@
80.22% *10.04% RH) and ambient conditions (26.85°C +0.50°C; BY NC ND
85.8% * 3.60% RH). At 10 days of storage (DAS) in a CoolBot-  ©the authors. This is an Open
equipped cold room, 36% less fruit than those in the ambient showed  Accessarticle distributed under the
> 51% yellowing, indicating slower color change. At 10 DAS, the low }ft;?;m?;n‘;% Creative Commons
temperature storage resulted in fruit weight loss reduced by up t0  (https://creativecommons.ora/
5.8%; slower pedicel abscission by 10% and reduced shriveling by licenses/by-nc-nd/4.0/)

31%. At 15 DAS, 36% and 78% of the fruit showed = 51% yellowing in

CoolBot-equipped cold room and ambient, respectively. Fruit

samples kept in the CoolBot-equipped cold store had more negative

a* values, indicating greater greenness of the calamansi peel.

Compared to ambient-stored fruit, hue was higher while the chroma

was lower. Moreover, fruit stored in the CoolBot-equipped cold room

exhibited better visual quality and controlled decay incidence for up

to 20 days of storage. These findings indicate that the shelf life of

calamansi fruit can be effectively extended in a CoolBot-equipped

room due to reduced deterioration and senescence.
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INTRODUCTION

The Philippine lime, locally known as calamansi (x Citrofortunella microcarpa),
calamondin, or lemonsito, is recognized by the Department of Agriculture as a highly
valued indigenous crop in the country (Lamberte, 2018). In 2019, domestic
production of calamansi ranked fourth after banana, mango, and pineapple, reaching
nearly 126,000 metric tons (Quijano et al., 2021; PSA, n.d.). The highest export volume
of calamansi was also recorded that year, at 99 metric tons, with an average annual
growth rate of 43% in exports since 2015 (PSA, n.d.). The major export markets of
fresh calamansi were Canada, United Arab Emirates, and Hong Kong (Agravante et al.,
2013). This highlights the relatively small share of Philippine calamansi exports
compared to its total domestic production. Still, it also indicates strong potential for
expanding calamansi export volumes due to increasing international demand.

However, calamansi production is facing setbacks in long distance
transportation from farm to markets, high perishability and short shelf-life. Fresh and
marketable calamansi fruit is harvested and sold at mature-green stage while full
yellow calamansi are already considered overripe and associated with reduced
commercial value at the retail level (Agravante et al., 2013). Rapid peel yellowing is
hastened under ambient conditions (27.39 + 0.48°C, 83.72 + 2.05% RH) with more
than 60% of peel yellowing taking place within six days of storage (Bayogan &
Secretaria, 2018). Furthermore, ambient storage conditions also promote the growth
of microorganisms. At retail, Agravante et al. (2013) reported 86% decay incidence
caused by Penicillium digitatum in calamansi fruit shipped from Mindanao to Metro
Manila.

Nevertheless, cooling treatment, particularly cold storage, extends fruit shelf life
as it reduces rates of fruit respiration and biochemical changes, and delays
microorganism growth (Singh et al., 2014; Kusumaningrum et al., 2015). In addition,
storing citrus at 7—-10°C with 85—95% RH suppressed fungal decay and prevented
chilling injury for short-term storage (Thompson et al., 1996). Cold storage systems
are however expensive and uneconomical for small-scale calamansi producers.

As a low-cost alternative, the CoolBot system enables digital air-conditioning
units in insulated rooms to maintain temperatures between 0-18°C (CoolBot,
2017). It can be remotely monitored via a mobile app, making it user-friendly for
smallholder farmers (Tolesa & Workneh, 2018). CoolBot-equipped cold rooms have
effectively slowed deterioration in fruits such as mangosteen (Tac-an et al., 2021),
mango (Karithi, 2016), tomato (Majubwa et al., 2022), and sweet orange (Acharya et
al.,2020), by reducing weightloss, delaying ripening, and preserving overall quality.

To date, CoolBot technology has not yet been tested on Philippine limes. This
study evaluated the effects of low-temperature storage using CoolBot technology
on peel color, pedicel abscission, and overall visual quality in wholesale-
purchased calamansi fruit.

MATERIALS AND METHODS

Sample Preparation

Newly-harvested mature-green calamansi fruit of uniform quality and size,
with intact pedicels and slight presence of scabs, were selected and procured from
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Bankerohan Public Market, Davao City. Samples were then transported to the
Postharvest Biology Laboratory of the University of the Philippines, Mintal, Davao
City for postharvest quality evaluation. Fruit were initially disinfected with 200mg
L NaOCl solution for 3min and were air dried. Samples were then divided into three
replicates consisting of 550-600g calamansi and were placed in clean plastic trays
with two sheets of paper on top of the fruit pile and then stored in designated
treatment conditions (Table 1). Evaluation of samples during storage was done
every five days until 20 days. Two trials were conducted from November to
December 2021.

Table 1. Average temperature and relative humidity of individual treatment conditions of two
storage trialsin calamansi.

Trial 1 Trial 2
" (November 2021) (December 2021)

Storage Conditions Temperature Relative Temperature Relative

(°C) Humidity (%) (°C) Humidity (%)
Ambient 26.78 £ 0.51 85.78 £+ 3.96 26.84 +0.49 85.63 £ 3.22
CoolBotequipped cold 17 414344 77064705 13.21£531  81.43+10.46
storage

DATA GATHERED

Percentage Weight Loss and Shriveling

Fruit samples were assessed for weight loss, shriveling, yellowing, peel color,
decay incidence and visual quality. For weight loss, initial weight and final weight
per evaluation day of each replicate were measured. Percentage weight loss was
calculated using Equation 1. Meanwhile, shriveling was measured by obtaining the
number of calamansi fruit that exhibited = 20% shriveled fruit surface area.
Percentage of shriveling was calculated using Equation 2.

Initial Weight-Final Weight X100 (1)

%Weight Loss = — -
Initial Weight

Total number of shriveled fruit

%Shriveling =
riveling Total number of fruit per replicate @

Pedicel Abscission

The total number of calamansi fruits without intact pedicels and the total
number of fruit per replicate were recorded. The percentage of pedicel abscission
was calculated using Equation 3.

Total number of fruit without pedicel X100 (3)

%Pedicel Abscission =
° Total number of fruit in a replication

Peel Color and Yellowing

Peel yellowing in calamansi fruit was measured based on the assessment
method of Bayogan and Secretaria (2018). Fruit samples were classified according
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to the percentage of yellowing on the fruit surface area, specifically into the
following categories: <25%, 26—50%, and =51% yellowing. The percentage of fruit
samples in each classification was calculated using Equation 4. Meanwhile, the
peel color of calamansi samples in Trial 2 was objectively measured using L, a, b*,
chroma, and hue angle (h°) color values, with a Nix Pro Color Sensor™ (Nix Sensor
Ltd., Ontario, Canada).

Total number of fruit per designated degree of yellowing x100  (4)

%Yellowing =
0 9 Total number of fruit in a replication

Decay Rating and Incidence

Per sampling period, five earlier identified samples were obtained from each
replicate for the decay rating of fruit. A scale of 1-5was used where 1 = no disease,
2=1 5% of surface area decayed, 3 =6 10% of surface area decayed, 4 =11-15% of
surface area decayed, and 5 = >16% of the surface area decayed. Calamansi fruit
showing some decay in each replicate was separated and counted. Percent decay
incidence was calculated using Equation 5.

Decay Incidence(%) = Total number of f.ru!t with d.eca}l X100 (5)
Total number of fruit in a replication

Visual Quality

Five earlier identified calamansi fruit per replicate for each treatment were
assessed for visual quality and was evaluated according to Bayogan and
Secretaria (2018) scale wherein 9—-8 = excellent, field fresh; 7-6 = very good, with
slight defects; 5—4 = good, with defects progressing, limit of saleability; 3—2 = fair,
with defects, limit of edibility; and 1 as poor and unsaleable.

Experimental Design and Statistical Analysis

The experiment was laid out in a completely randomized design with two
treatments and three replications for each treatment. Each replicate consists of
550-600 g calamansi and was used for determination of weight loss and
percentage peel yellowing. Five samples per replicate were assessed for decay
rating and incidence, peel color and visual quality. Data were analyzed using
Independent Sample T-test Analysis at 95% confidence level.

RESULTS AND DISCUSSION

Weight Loss and Shriveling

In both trials, calamansi fruit stored in ambient conditions showed an average
weight loss of 7.7% at 5 days after storage (DAS) while there was a 3-8% higher
weight loss compared to fruit stored in CoolBot conditions at 10-15 DAS (Figures
1A and 1B). Moreover, = 20% shriveling increased during storage, particularly in
fruit stored under ambient conditions, with 100% of samples showing signs of
shriveling at 20 and 15 DAS for Trials 1 and 2, respectively (Figures 1Cand 1D) as a
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consequence of greater weight loss. Conversely, the incidence of shriveling was
minimized in fruit subjected to low temperature treatment, particularly in Trial 2.

This is consistent with the earlier findings of Bayogan and Secretaria (2018),
where a 7.45% weight loss was incurred after six days of storage under ambient
conditions. The higher weight loss in ambient-stored calamansi can be attributed
to greater water loss induced by elevated temperatures (Sun et al., 2022).
Additionally, excessive water loss has been found to cause fruit softening and
shriveling in citrus fruits (Rymbai et al., 2024). On the other hand, Bhusal et al.
(2025) observed reduced weight loss in mandarin oranges stored in a CoolBot-
equipped cool chamber for 28 to 49 days.
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Figure 1. Percentage weight loss (A- Trial 1, B-Trial 2) and percent shriveling (C-Trial 1, D- Trial 2)
of calamansi fruit stored under ambient and CoolBot-equipped cold room conditions. Bars
represent standard deviation values. Different letters per day of storage indicate a significant
difference between treatments atp <0.05.

Pedicel Abscission

In both trials, pedicel abscission as indicated by = 20% shriveling progressed
significantly in ambient-stored samples, with abscission incidence higher by
approximately 9% to 37% at 15 DAS (Figure 2A—-2B). Meanwhile, the CoolBot-
equipped cold storage effectively retained intact pedicels, limiting abscission
incidence to 0—2% among calamansi samples throughout the entire storage
periodinboth trials.

Yuan and Burns (2004) reported that elevated temperatures above 15°C
promoted a spike in ethylene production, which reduced fruit detachment force in
citrus and consequently increased abscission rates. A similar mechanism may
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underlie the pedicel abscission in calamansi. Additionally, ethylene has been shown
to stimulate cellulase activity in the abscission zones (Kazokas & Burns, 1998),
which could further contribute to pedicel detachment. The earlier report of Bayogan
and Secretaria (2018) demonstrated that the application of 1-MCP, an ethylene
inhibitor, delayed pedicel abscission in calamansi.
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Figure 2. Percentage of pedicel abscission (A-Trial 1, B-Trial 2) in calamansi fruit stored under
ambient and low temperature conditions. Bars represent standard deviation values. Different
letters per day of storage indicate a significant difference between treatments atp < 0.05.

On the other hand, ethylene treatment in citrus fruit was found to have no
influence on fruit detachment force and abscission when exposed to low air
temperatures of 10—15°C (Yuan & Burns, 2004). In other studies, Lado et al. (2015)
on grapefruit and Zou et al. (2014) on papaya indicated that ethylene levels in these
cold-stored produce remained low, and ethylene production appeared to be
suppressed. The low abscission incidence in the present CoolBot-stored calamansi
may be due to slower fruit physiological processes due to the lower temperature.

Peel Color and Yellowing

Figures 3A and 3B show that at 10 and 15 DAS in the CoolBot-equipped cold
room, there were more fruit (75% and 64%, respectively) that were in the < 50%
yellow stage while only 39% and 22%, respectively, remained in this peel color stage
in ambient storage. At 15 DAS, 36% and 78% of the fruit showed = 51% yellowing in
the CoolBot-equipped cold room and ambient stores, respectively. About 41% of the
samples in Trial 1 and 81% in Trial 2, stored under ambient conditions, were
developing into the full yellow stage, reaching over 51% yellowing as early as 10 DAS
in Trial 2and 15 DAS in Trial 1. In contrast, 29% and 32% of calamansi fruit stored at
low temperature using CoolBot remained more green than yellow, exhibiting 26%-
50% yellowing after 20 days in Trials 1 and 2, respectively.

This was further confirmed by the higher b* color values, which indicate
yellowness, and higher L values, which represent the lightness of the peel (Figure
4). Meanwhile, fruit samples kept in the CoolBot-equipped cold store had more
negative a* values, indicating greater greenness of the calamansi peel over the
entire storage duration. Due to the above b* and a* values, CoolBot-stored fruit had
shown higher hue and lower chroma throughout storage compared to ambient-
stored fruit.
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Figure 3. Percentage of yellowing of calamansi (A-Trial 1, B-Trial 2) stored under ambient and

CoolBot-equipped cold room conditions.

Porat (2008) reported that high temperatures hasten chlorophyll degradation
in citrus fruit. This might be due to evolution of ethylene production at these
temperatures (Yuan & Burns, 2004). Yin et al. (2016) found that upon exposure to
ethylene, CitERF13 transcript levels increase which triggers expression of
pheophorbide hydrolase, the enzyme responsible for chlorophyll breakdown.
Moreover, degreening of citrus fruit at low temperatures was seen to progress
slowly (Rymbai et al., 2024) and can be associated with reduced ethylene

production at cold storage (Saltveit, 1999).
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Figure 4. Peel color (L*, a* and b*, chroma and hue) of calamansi stored under ambient and
CoolBot conditions (Trial 2). Bars represent standard deviation values. Different small letters per
day of storage indicate a significant difference between treatments for Trial 1 atp <0.05.
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Figure 4. continued

Decay Incidence and Rating

By 15 DAS, decay incidence among ambient-stored samples exceeded 26% in
both trials, reaching up to 50% by the end of the storage period. The samples
exhibited decay rating scores of 2 to 3, indicating 5—10% decay in the fruit surface
area throughout the storage duration (Figures 5A-5D). However, fruit stored in
CoolBot cold storage exhibited no signs of decay throughout the entire storage
periodin Trial 1,and a decay incidence of only 7% by the end of the 20-day storage
periodin Trial 2.
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Figure 5. Percentage of decay incidence (A-Trial 1, B-Trial 2) and decay rating (C-Trial 1, D-Trial 2)
of calamansi fruit stored under ambient and CoolBot conditions. Bars represent standard
deviation values. Different letters per day of storage indicate a significant difference between
treatments atp <0.05.
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Higher disease incidence in fruit samples is due to elevated temperatures and
high humidity in ambient conditions, as these favor fungal and bacterial
development (Kusumaningrum et al., 2015; Lamberty & Kreyenschmidt, 2022). In
addition, these conditions also accelerate fruit ripening, increasing sugars in fruit,
making samples more susceptible to microbial growth (Serrano & Bautista, 2007).
At retail levels, deterioration by Penicillium digitatum is prevalent in Philippine
calamondin causing losses of up to 86% (Agravante et al., 2013).

On the other hand, low temperature storage is reported to reduce respiration
and decay in blood orange fruit (Habibi et al., 2024). A similar study conducted by
Rab et al. (2012) showed that storage of citrus fruit in 10°C effectively prevented
decay development. Bhusal et al. (2025) also observed the lowest percentage of
decay loss among mandarins storedin CoolBot cold chambers.

Visual Quality

Visual quality was significantly better in calamansi fruit stored in the CoolBot
system throughout the entire storage period in both trials (Figures 6A and 6B). At
15 DAS, CoolBot-stored calamansi remained marketable, with a visual quality
scoreof 4—5inboth trials. This can be attributed to a higher percentage of fruit with
intact pedicels, lesser shriveling, reduced peel color change, and lower incidence of
decay. These effects are due to the low temperature, which inhibits microbial
growth and slows down respiration and metabolic activities, thereby delaying
ripening and senescence (Habibi et al., 2020).

On the other hand, ambient-stored fruit samples had changed more quickly
into poor and non-marketable quality due to higher incidence of decay; faster peel
yellowing, pedicel abscission and shriveling as early as 10 days of storage in Trial 2
(Figure 6B, Figure 7).
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Figure 6. Visual quality rating (VQR, A- Trial 1, B-Trial 2) of calamansi fruit stored under ambient
and CoolBot cold room conditions. Bars represent standard deviation values. Different letters per
day of storage indicate a significant difference between treatments at p <0.05.
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CoolBot cold storage has also been shown to extend the shelf life of various
fresh produce. Tac-an et al. (2021) reported that storing reddish-purple and dark-
purple mangosteen in CoolBot extended shelf life by 21 days. Similarly, the shelf
life of 'Apple’ mango increased by 23 days when stored at 10 + 2°C (Ambuko et al.,
2018). In addition, shelf life of dragon fruit and tomato was extended by more than
2.5days and up to 42 days, respectively (Khatun etal., 2022; Majubwa et al., 2022).

Ambient

CoolBot

Figure 7. Visual quality rating of calamansi fruit stored under ambient and CoolBot cold room
conditions at 10 days of storage.

CONCLUSION

The study evaluated the postharvest physical quality of calamansi fruit stored
under two storage conditions (ambient or room temperature and low temperature
using the CoolBot technology). Storage of fruit at low temperature conditions
using CoolBot technology maintained better quality of calamansi fruit longer
compared to storage in ambient room conditions. The CoolBot-equipped cold
room reduced weight loss, shriveling and occurrence of disease in calamansi fruit
during storage. Storage of fruitin low temperatures retained the pedicel of fruit and
slowed down changes in fruit up to 20 days. Better quality of fruit stored in the
CoolBot-equipped cold room was maintained until 10 days with a visual quality
rating of 4-5 that was still considered marketable. At 10 and 15 days after storage
(DAS) in the CoolBot-equipped storage, there were more fruit (75% and 64%,
respectively) that were in the < 50% yellow stage while only 39% and 22%,
respectively, remained in this peel color stage in ambient storage. At 15 DAS, 36%
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and 78% of the fruit showed = 51% yellowing in the CoolBot-equipped cold room
and ambient stores, respectively. These results indicate that the use of CoolBot
technology in an insulated room store significantly maintained good quality by
maintaining intact pedicels and slowing down color change and extended the shelf
life of calamansi fruit. Thus, it is an effective technology that can preserve the fresh
quality of calamansi and help reduce postharvest losses.
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